Redis源码分析-内存数据结构intset

这次研究了一下intset,研究的过程中,一度看不下过去,但是还是咬牙挺过来了,看懂了也就是那么回事,静下心来,切莫浮躁

Redis为了追求高效,在存储下做了很多的优化,像intset就是作者为了节约内存定制的数据结构,包括后面将要阅读的压缩列表。

intset是一个有序的整数集,提供了增加,删除,查找的接口,针对uint16_t uint32_t uint64_t,提供了不同编码的转换(严格的说只是类型的提升)

首先,看一下它的结构定义:

typedef struct intset {
    uint32_t encoding;
    uint32_t length;
    int8_t contents[];
} intset;

encoding:有如下几种编码

#define INTSET_ENC_INT16 (sizeof(int16_t))
#define INTSET_ENC_INT32 (sizeof(int32_t))
#define INTSET_ENC_INT64 (sizeof(int64_t))

实际上这里使用一个uint8_t存储就够了

length:当前整数集有多少个整数

contents[]:具体存储的位置,这里以一个字节为存储单元,方便对高类型进行寻址

看一下它对外提供的接口:

intset *intsetNew(void);
intset *intsetAdd(intset *is, int64_t value, uint8_t *success);
intset *intsetRemove(intset *is, int64_t value, int *success);
uint8_t intsetFind(intset *is, int64_t value);
int64_t intsetRandom(intset *is);
uint8_t intsetGet(intset *is, uint32_t pos, int64_t *value);
uint32_t intsetLen(intset *is);
size_t intsetBlobLen(intset *is); 

一种数据结构,必然要提供类似插入,查询,删除这样的接口,另外不要暴露内部使用的接口,这里提供的接口,我们具体分析几个

初始化接口:

/* Create an empty intset. */
intset *intsetNew(void) {
    intset *is = malloc(sizeof(intset));
    is->encoding = intrev32ifbe(INTSET_ENC_INT16);
    is->length = 0;
    return is;
}

没什么难的,注意默认使用最低的2字节存储

/* Insert an integer in the intset */
intset *intsetAdd(intset *is, int64_t value, uint8_t *success) {
    uint8_t valenc = _intsetValueEncoding(value);
    uint32_t pos;
    if (success) *success = 1;

    /* Upgrade encoding if necessary. If we need to upgrade, we know that
     * this value should be either appended (if > 0) or prepended (if < 0),
     * because it lies outside the range of existing values. */
    if (valenc > intrev32ifbe(is->encoding)) {
        /* This always succeeds, so we don't need to curry *success. */
        return intsetUpgradeAndAdd(is,value);
    } else {
        /* Abort if the value is already present in the set.
         * This call will populate "pos" with the right position to insert
         * the value when it cannot be found. */
        if (intsetSearch(is,value,&pos)) {
            if (success) *success = 0;
            return is;
        }

        is = intsetResize(is,intrev32ifbe(is->length)+1);
        if (pos < intrev32ifbe(is->length)) intsetMoveTail(is,pos,pos+1);
    }

    _intsetSet(is,pos,value);
    is->length = intrev32ifbe(intrev32ifbe(is->length)+1);
    return is;
}

这个接口比较有难度,具体分析:

1、首先判断要增加的值的编码是否大于当前编码,大于则进行类型提升,并加入value

2、如果小于当前编码,首先查询数据是否存在,存在则返回,不存在则设置插入位置pos

3、重新分配内存大小

4、移动数据,所有数据往后移动,复杂度有点高啊

5、插入数据,设置数据个数

其中,类型提升并插入value的接口如下:

/* Upgrades the intset to a larger encoding and inserts the given integer. */
static intset *intsetUpgradeAndAdd(intset *is, int64_t value) {
    uint8_t curenc = intrev32ifbe(is->encoding);
    uint8_t newenc = _intsetValueEncoding(value);
    int length = intrev32ifbe(is->length);
    int prepend = value < 0 ? 1 : 0;

    /* First set new encoding and resize */
    is->encoding = intrev32ifbe(newenc);
    is = intsetResize(is,intrev32ifbe(is->length)+1);

    /* Upgrade back-to-front so we don't overwrite values.
     * Note that the "prepend" variable is used to make sure we have an empty
     * space at either the beginning or the end of the intset. */
    while(length--)
        _intsetSet(is,length+prepend,_intsetGetEncoded(is,length,curenc));

    /* Set the value at the beginning or the end. */
    if (prepend)
        _intsetSet(is,0,value);
    else
        _intsetSet(is,intrev32ifbe(is->length),value);
    is->length = intrev32ifbe(intrev32ifbe(is->length)+1);
    return is;
}

可以看到,类型提升的过程如下:

1、因为整数集是有序的,所以首先判断要加入的数是正数还是负数,正数就在尾部添加,负数则在头部添加

2、增加内存大小

3、移动数据,这里和第一步挂钩,而且移动的过程比较难以理解,首先根据原来编码取出数据,然后根据新的编码插入数据

4、插入数据,在头部还是尾部插入

5、修改数据个数

另外移动数据的接口如下:

static void intsetMoveTail(intset *is, uint32_t from, uint32_t to) {
    void *src, *dst;
    uint32_t bytes = intrev32ifbe(is->length)-from;
    uint32_t encoding = intrev32ifbe(is->encoding);

    if (encoding == INTSET_ENC_INT64) {
        src = (int64_t*)is->contents+from;
        dst = (int64_t*)is->contents+to;
        bytes *= sizeof(int64_t);
    } else if (encoding == INTSET_ENC_INT32) {
        src = (int32_t*)is->contents+from;
        dst = (int32_t*)is->contents+to;
        bytes *= sizeof(int32_t);
    } else {
        src = (int16_t*)is->contents+from;
        dst = (int16_t*)is->contents+to;
        bytes *= sizeof(int16_t);
    }
    memmove(dst,src,bytes);
}

因为是连续的内存,找到移动的起始位置,然后memmove(),bingo!!!

查找数据的接口实现:

static uint8_t intsetSearch(intset *is, int64_t value, uint32_t *pos) {
    int min = 0, max = intrev32ifbe(is->length)-1, mid = -1;
    int64_t cur = -1;

    /* The value can never be found when the set is empty */
    if (intrev32ifbe(is->length) == 0) {
        if (pos) *pos = 0;
        return 0;
    } else {
        /* Check for the case where we know we cannot find the value,
         * but do know the insert position. */
        if (value > _intsetGet(is,intrev32ifbe(is->length)-1)) {
            if (pos) *pos = intrev32ifbe(is->length);
            return 0;
        } else if (value < _intsetGet(is,0)) {
            if (pos) *pos = 0;
            return 0;
        }
    }

    while(max >= min) {
        mid = ((unsigned int)min + (unsigned int)max) >> 1;
        cur = _intsetGet(is,mid);
        if (value > cur) {
            min = mid+1;
        } else if (value < cur) {
            max = mid-1;
        } else {
            break;
        }
    }

    if (value == cur) {
        if (pos) *pos = mid;
        return 1;
    } else {
        if (pos) *pos = min;
        return 0;
    }
}

还是个二分查找,niubility!!!个人感觉这种数据结构的高效就体现在这里,因为是有序,所以查找快速,因为是数组,所以插入,删除,是连续内存拷贝,也很快

有时间突然想去看一下STL Vector的实现了,它的insert是如何实现的?

时间: 2024-12-20 01:19:55

Redis源码分析-内存数据结构intset的相关文章

redis源码分析之数据结构--dictionary

本文不讲hash算法,而主要是分析redis中的dict数据结构的特性--分步rehash. 首先看下数据结构:dict代表数据字典,每个数据字典有两个哈希表dictht,哈希表采用链式存储. typedef struct dictEntry {//封装键值对 void *key; union {//联合体表示不同数据类型,节省空间 void *val; uint64_t u64; int64_t s64; } v; struct dictEntry *next; } dictEntry; ty

redis源码分析之内存布局

redis源码分析之内存布局 1. 介绍 众所周知,redis是一个开源.短小.高效的key-value存储系统,相对于memcached,redis能够支持更加丰富的数据结构,包括: 字符串(string) 哈希表(map) 列表(list) 集合(set) 有序集(zset) 主流的key-value存储系统,都是在系统内部维护一个hash表,因为对hash表的操作时间复杂度为O(1).如果数据增加以后,导致冲突严重,时间复杂度增加,则可以对hash表进行rehash,以此来保证操作的常量时

redis 源码分析(一) 内存管理

一,redis内存管理介绍 redis是一个基于内存的key-value的数据库,其内存管理是非常重要的,为了屏蔽不同平台之间的差异,以及统计内存占用量等,redis对内存分配函数进行了一层封装,程序中统一使用zmalloc,zfree一系列函数,其对应的源码在src/zmalloc.h和src/zmalloc.c两个文件中,源码点这里. 二,redis内存管理源码分析 redis封装是为了屏蔽底层平台的差异,同时方便自己实现相关的函数,我们可以通过src/zmalloc.h 文件中的相关宏定义

redis源码分析3---结构体---字典

redis源码分析3---结构体---字典 字典,简单来说就是一种用于保存键值对的抽象数据结构: 注意,字典中每个键都是独一无二的:在redis中,内部的redis的数据库就是使用字典作为底层实现的: 1 字典的实现 在redis中,字典是使用哈希表作为底层实现的,一个hash表里面可以有多个hash表节点,而每个hash表节点就保存了字典中的一个键值对: hash表定义 table属性是一个数组,数组中的每个元素都是一个指向dictEntry结构的指针,每个dictEntry结构保存着一个键值

redis源码分析4---结构体---跳跃表

redis源码分析4---结构体---跳跃表 跳跃表是一种有序的数据结构,他通过在每个节点中维持多个指向其他节点的指针,从而达到快速访问节点的目的: 跳跃表支持平均O(logN),最坏O(N)复杂度的节点查找,还可以通过顺序性操作来批量处理节点.性能上和平衡树媲美,因为事先简单,常用来代替平衡树. 在redis中,只在两个地方使用了跳跃表,一个是实现有序集合键,另一个是在集群节点中用作内部数据结构. 1 跳跃表节点 1.1 层 层的数量越多,访问其他节点的速度越快: 1.2 前进指针 遍历举例

redis源码分析之事务Transaction(下)

接着上一篇,这篇文章分析一下redis事务操作中multi,exec,discard三个核心命令. 原文地址:http://www.jianshu.com/p/e22615586595 看本篇文章前需要先对上面文章有所了解: redis源码分析之事务Transaction(上) 一.redis事务核心命令简介 redis事务操作核心命令: //用于开启事务 {"multi",multiCommand,1,"sF",0,NULL,0,0,0,0,0}, //用来执行事

linux内存源码分析 - 内存压缩(同步关系)

本文为原创,转载请注明:http://www.cnblogs.com/tolimit/ 概述 最近在看内存回收,内存回收在进行同步的一些情况非常复杂,然后就想,不会内存压缩的页面迁移过程中的同步关系也那么复杂吧,带着好奇心就把页面迁移的源码都大致看了一遍,还好,不复杂,也容易理解,这里我们就说说在页面迁移过程中是如何进行同步的.不过首先可能没看过的朋友需要先看看linux内存源码分析 - 内存压缩(一),因为会涉及里面的一些知识. 其实一句话可以概括页面迁移时是如何进行同步的,就是:我要开始对这

linux内存源码分析 - 内存回收(整体流程)

本文为原创,转载请注明:http://www.cnblogs.com/tolimit/ 概述 当linux系统内存压力就大时,就会对系统的每个压力大的zone进程内存回收,内存回收主要是针对匿名页和文件页进行的.对于匿名页,内存回收过程中会筛选出一些不经常使用的匿名页,将它们写入到swap分区中,然后作为空闲页框释放到伙伴系统.而对于文件页,内存回收过程中也会筛选出一些不经常使用的文件页,如果此文件页中保存的内容与磁盘中文件对应内容一致,说明此文件页是一个干净的文件页,就不需要进行回写,直接将此

(转)linux内存源码分析 - 内存回收(整体流程)

http://www.cnblogs.com/tolimit/p/5435068.html------------linux内存源码分析 - 内存回收(整体流程) 概述 当linux系统内存压力就大时,就会对系统的每个压力大的zone进程内存回收,内存回收主要是针对匿名页和文件页进行的.对于匿名页,内存回收过程中会筛选出一些不经常使用的匿名页,将它们写入到swap分区中,然后作为空闲页框释放到伙伴系统.而对于文件页,内存回收过程中也会筛选出一些不经常使用的文件页,如果此文件页中保存的内容与磁盘中