[Todo]机器学习系列

就看这个系列的吧:

http://blog.csdn.net/yaoqiang2011/article/category/5877239/3

另外本机上的 /Users/baidu/Documents/Data/Interview/机器学习-数据挖掘/机器学习实战(中文版+英文版+源代码)

机器学习实战.pdf

时间: 2024-12-14 10:34:28

[Todo]机器学习系列的相关文章

机器学习系列(6)_从白富美相亲看特征预处理与选择(下)

作者:viewmode=contents">龙心尘 &&寒小阳 时间:2016年1月. 出处: http://blog.csdn.net/longxinchen_ml/article/details/50493845. http://blog.csdn.net/han_xiaoyang/article/details/50503115 声明:版权全部,转载请联系作者并注明出处 1. 剧情一:挑螃蟹的秘密 李雷与韩梅梅的关系发展得不错.趁国庆休假一起来天津玩. 今天,李雷十分

机器学习系列1-学习资料和学习路线

该系列是学习机器学习的系列博客,主要用于记录和分享学习机器学习(和深度学习)过程中的各种知识和问题,希望能够将自己学习到的知识.方法论转化为文字,分享给更多有志于从事机器学习相关工作或学习的同学. 学习资源 目前网上关于机器学习的资源已经非常丰富,现在分享笔者学习过程中接触到的学习资源: 书籍: <机器学习>-周志华 链接:http://pan.baidu.com/s/1bo7j7SN 密码:47wi<Deep Learning>-花书 链接:http://pan.baidu.co

Spark2.0机器学习系列之8: 聚类分析(K-Means,Bisecting K-Means,LDA,高斯混合模型)

在写这篇文章之前,先说一些题外话. 许多机器学习算法(如后面将要提到的LDA)涉及的数学知识太多,前前后后一大堆,理解起来不是那么容易. 面对复杂的机器学习模型,尤其是涉及大量数学知识的模型,我们往往要花费大量的时间和精力去推导数学算法(公式),如果过分沉湎于此会忽略了很多背后也许更重要的东西,正所谓只见树木,不见森林,而这是缺乏远见,是迷茫的. 我们需要深入理解模型背后的逻辑和所蕴含的或简或繁的思想.某些思想甚至可能是很美的思想,很伟大的思想.这些理解,使得面对复杂的问题时候,面对陌生问题时,

spark机器学习系列:(三)用Spark Python构建推荐系统

上一篇博文详细介绍了如何使用Spark Python进行数据处理和特征提取,本系列从本文开始,将陆续介绍用Spark Python对机器学习模型进行详细的探讨. 推荐引擎或许是最为大众所知的一种机器学习模型.人们或许并不知道它确切是什么,但在使用Amazon.Netflix.YouTube.Twitter.LinkedIn和Facebook这些流行站点的时候,可能已经接触过了.推荐是这些网站背后的核心组件之一,有时还是一个重要的收入来源. 推荐引擎背后的想法是预测人们可能喜好的物品并通过探寻物品

机器学习系列-Logistic Regression(1)

机器学习 这是记录自学的过程,目前的理论基础就是:大学高等数学+线性代数+概率论.编程基础:C/C++,python在观看机器学习实战这本书,慢慢介入.相信有读过以上三门课的人完全可以开始自学机器学习了,当然我上面这三门课学的一般,所以你只知道有这么一个公式或名词,不懂可以百度之深究之.在写这篇文章的时候作者机器学习还没学完,故文章中的错误还请不吝指出.再次声明,系列文章只是分享学习过程,学习点滴,不能保证文章的技术含量.后续再技术的不断完善中,我会重新再捋一遍这个学习过程,纠正其中错误. 目前

机器学习系列(7)_机器学习路线图(附资料)

作者: 龙心尘 && 寒小阳 时间:2016年2月. 出处:http://blog.csdn.net/longxinchen_ml/article/details/50749614 http://blog.csdn.net/han_xiaoyang/article/details/50759472 声明:版权所有,转载请联系作者并注明出处 1. 引言 也许你和这个叫『机器学习』的家伙一点也不熟,但是你举起iphone手机拍照的时候,早已习惯它帮你框出人脸:也自然而然点开今日头条推给你的新闻

机器学习系列-K-NearestNeighbo

这是记录自学的过程,目前的理论基础就是:大学高等数学+线性代数+概率论.编程基础:C/C++,python 在观看机器学习实战这本书,慢慢介入.相信有读过以上三门课的人完全可以开始自学机器学习了,当然我上面这三门课学的一般,所以你只知道有这么一个公式或名词,不懂可以百度之深究之.在写这篇文章的时候作者机器学习还没学完,故文章中的错误还请不吝指出.再次声明,系列文章只是分享学习过程,学习点滴,不能保证文章的技术含量.后续再技术的不断完善中,我会重新再捋一遍这个学习过程,纠正其中错误. 目前的学习方

就是要你明白机器学习系列--决策树算法之悲观剪枝算法(PEP)

前言 在机器学习经典算法中,决策树算法的重要性想必大家都是知道的.不管是ID3算法还是比如C4.5算法等等,都面临一个问题,就是通过直接生成的完全决策树对于训练样本来说是“过度拟合”的,说白了是太精确了.由于完全决策树对训练样本的特征描述得“过于精确” ,无法实现对新样本的合理分析, 所以此时它不是一棵分析新数据的最佳决策树.解决这个问题的方法就是对决策树进行剪枝,剪去影响预测精度的分支.常见的剪枝策略有预剪枝(pre -pruning)技术和后剪枝(post -pruning )技术两种.预剪

Spark 机器学习系列(一):入门介绍

前言 最新的情况是国内BAT已经都上了spark,而且spark在hadoop上的应用,大有为大象插上翅膀的效果.个人估计在未来两到三年,spark大有代替hadoop的mapreduce的趋势.应该说spark的在使用上面的经济成本,性能优势,一站式解决能力,一定会使其大放异彩. 因为个人对spark很感兴趣,加上项目中需要使用它解决一些机器学习的问题,在网上搜集资料时发现,spark machine learning这块的资料确实太缺少了,所以决定写一spark machine learni