题意:给出一个n*m的矩阵,内有一些数字。当你从一个方格走到另一个方格时,按这两个方格数字的大小,有(升,平,降)三种费用。你需要在矩阵中找到边长大于2的一个矩形,使得按这个矩形顺时针行走一圈的费用,与给定费用最接近。3<=n,m<=300。
思路:O(1)计算一个矩形的费用不是什么难事,因为考虑到有前缀性质(前缀性质:[l,r] = [0,r] -
[0,l-1]),只要预处理好各行各个方向行走的费用,就容易计算。
直接枚举容易得到O(n^4)的算法。难以过。这时就应当想到优化。实际上,经过优化,可以得到O(n^3
*log(n))的算法。优化的方法如下:只枚举上下两层位置和右边界位置,正常思路是再枚举左边界位置,如果我们能二分得到左边界位置,就完美了。可惜直接二分并不满足性质。[本题关键点]这时需要构造一个前缀性质。如图
细了就不说了。思考一下吧~。然后边扫边插入前面的前缀到set里面,然后用lower_bound就可以了。不过注意边界问题。
代码:
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <set>
#include <vector>using namespace std;
#define R 0
#define L 1
#define U 2
#define D 3
#define N 400
int sum[4][N][N];
int t[3];
int mat[N][N];
int n, m, goalt;void init() {
for (int i = 0; i < n; i++) {
sum[R][i][0] = sum[L][i][0] = 0;
for (int j = 1; j < m; j++) {
sum[R][i][j] = sum[R][i][j-1];
sum[L][i][j] = sum[L][i][j-1];
if (mat[i][j] == mat[i][j-1]) {
sum[R][i][j] += t[0];
sum[L][i][j] += t[0];
continue;
}
if (mat[i][j] > mat[i][j-1]) {
sum[R][i][j] += t[1];
sum[L][i][j] += t[2];
continue;
}
if (mat[i][j] < mat[i][j-1]) {
sum[R][i][j] += t[2];
sum[L][i][j] += t[1];
continue;
}
}
}for (int j = 0; j < m; j++) {
sum[U][0][j] = sum[D][0][j] = 0;
for (int i = 1; i < n; i++) {
sum[U][i][j] = sum[U][i-1][j];
sum[D][i][j] = sum[D][i-1][j];
if (mat[i][j] == mat[i-1][j]) {
sum[U][i][j] += t[0];
sum[D][i][j] += t[0];
continue;
}
if (mat[i-1][j] > mat[i][j]) {
sum[U][i][j] += t[1];
sum[D][i][j] += t[2];
continue;
}
if (mat[i-1][j] < mat[i][j]) {
sum[U][i][j] += t[2];
sum[D][i][j] += t[1];
continue;
}
}
}
}int ans[4];
int minabsdis;
typedef pair<int,int> pii;//#define FIX 10000000
inline int getLeftVal(int iup, int idn, int j) {
//int res = -(sum[U][idn][j] - sum[U][iup][j]) + sum[R][iup][j] + sum[L][idn][j];
//printf("(%d,%d,%d) = %d\n", iup+1, idn+1, j, res);
return -(sum[U][idn][j] - sum[U][iup][j]) + sum[R][iup][j] + sum[L][idn][j];
}
void find() {
minabsdis = 999999999;
for (int iup = 0; iup < n; iup++) {
for (int idn = iup+2; idn < n; idn++) {
set< pair<int,int> > leftsum;
leftsum.clear();
set< pair<int,int> >::iterator spi;
//printf("(%d,%d)\n", iup+1, idn+1);
leftsum.insert(pii(getLeftVal(iup,idn,0), 0));
//printf("first = (%d,%d)\n", (*leftsum.begin()).first,(*leftsum.begin()).second);
for (int j = 2; j < m; j++) {
int now = sum[R][iup][j] + sum[L][idn][j] + sum[D][idn][j]-sum[D][iup][j];
int should = now - goalt;
//printf("(%d) should = %d\n", j, should);
spi = leftsum.lower_bound(pii(should, 0));
if (spi == leftsum.end()) {
//puts("meet end");
spi--;
}
else if (spi != leftsum.begin()){
int rnum = now-(*spi).first;
spi--;
int lnum = now-(*spi).first;
spi++;
if (fabs(lnum-goalt) < fabs(rnum-goalt)) {
//puts("minus");
spi--;
}
}
pii findpair = *spi;
//printf("find (%d,%d)\n", findpair.first, findpair.second);
int final = now - findpair.first;
if ((int)fabs(final-goalt) < minabsdis) {
//puts("lala");
minabsdis = fabs(final-goalt);
ans[0] = iup;
ans[1] = findpair.second;
ans[2] = idn;
ans[3] = j;
}
leftsum.insert(pii(getLeftVal(iup,idn,j-1), j-1));
}
}
}
}int gettype(int l, int r, bool rev) {
if (rev) l^=r^=l^=r;
if (l==r) return 0;
if (l<r) return 1;
if (l>r) return 2;
}
void checkAns() {
int res = 0;
for (int j = ans[1]+1; j <= ans[3]; j++) {
res += t[gettype(mat[ans[0]][j-1], mat[ans[0]][j], false)];
res += t[gettype(mat[ans[2]][j-1], mat[ans[2]][j], true)];
}
for (int i = ans[0]+1; i <= ans[2]; i++) {
res += t[gettype(mat[i-1][ans[1]], mat[i][ans[1]], true)];
res += t[gettype(mat[i-1][ans[3]], mat[i][ans[3]], false)];
}
if ((int)fabs(res-goalt) != minabsdis) printf("error!: check:%d, output:%d\n", (int)fabs(res-goalt), minabsdis);
}int main() {
while (scanf("%d%d%d", &n, &m, &goalt) != EOF) {
for (int i = 0; i < 3; i++) {
scanf("%d", &t[i]);
}for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
scanf("%d", &mat[i][j]);
}
}init();
//for (int i = 0; i < n; i++) {
// printf("%d\n", sum[U][i][0]);
//}find();
for (int i = 0; i < 4; i++) {
printf("%d ", ans[i]+1);
}puts("");
//printf("minabsdis = %d\n", minabsdis);
checkAns();
}
return 0;
}
CodeForces 424D: ...(二分),布布扣,bubuko.com