机器学习之支持向量机

支持向量机

1.间隔与支持向量

  分类学习的基本想法就是基于训练集D在样本空间找到一个划分超平面,将不同的类别进行区分,我们的关键是如何能够找到一个合适的超平面(泛化性能最好)

  下面的式子表示样本空间到超平面的距离。

  若存在超平面将训练样本正确分类,则对(xi,yi),若yi = 1,则有wTx + b > 0; 若yi = -1,则wTx + b <0. 若这假设能存在,我们可以对其进行缩放变换得到如下式子。

  因此能找到两个平面 = 1的平面,等号成立的训练点为支持向量,两个异类(不同边上)的支持向量到超平面的和为

  因此想要找到支持间隔,就是要找到能够在满足约束条件下,使得间隔最大。等价于找到最小的||w||2,。如下式所示:

2. 对偶问题

  上述的问题本身为凸优化问题,可直接使用凸二次规划问题来进行求解。也可利用拉格朗日算子问题,对每条约束添加拉格朗日乘子ai>0,从而得拉格朗日函数。

  另上式子对w,b进行求骗导另偏导为0,进行抵消,又可以得到对偶问题。

SMO算法:

时间: 2024-10-13 22:43:36

机器学习之支持向量机的相关文章

OpenCV 机器学习之 支持向量机的使用方法实例

用支持向量机进行文理科生的分类,根据的特征主要是 数学成绩与语文成绩,这两个特征都服从高斯分布 程序代码例如以下: 分类结果: OpenCV 机器学习之 支持向量机的使用方法实例

机器学习笔记——支持向量机(3)

八.核(kernel) 如果样本点为线性不可分,那么,需要将数据映射到高维空间,使在原始空间内其线性可分变为线性可分.如下图所示: 上文提到,分类器可以写成: 那么,如果使用一种映射的方法,将低维数据映射到高维(),使得线性不可分变为线性可分.称为特征映射函数,这样,分类器就变为: (1)实例 低维映射到高维能否将线性不可分变为线性可分呢?下面就举个例子来看.假设数据可以用决策的边界表示(如下图左所示),那么,利用, ,做映射,可以得到决策边界:.经过上述的映射变换,原来在圆内的点都在超平面的一

机器学习——svm支持向量机的原理

前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚,尽管网上已经有朋友写得不错了(见文末参考链接),但在描述数学公式的时候还是显得不够.得益于同学白石的数学证明,我还是想尝试写一下,希望本文在兼顾通俗易懂的基础上,真真正正能足以成为一篇完整概括和介绍支持向量机的导论性的文章. 本文在写的过程中,参考了不少资料,包括<支持向量机导论>.<统

关于机器学习中支持向量机相关问题

前言 在机器学习中,分类问题占了很大一部分,而对于分类问题的处理有很多方法,比如决策树.随机森林.朴素贝叶斯.前馈神经网络等等:而最为常见的分类需求一般是二分类问题,即将样本分为两个集合,然后通过学习某些参数,对新的输入进行识别并划分到正确的类别中. 在解决分类问题中,应该说线性分类器就是最为简单的一类,虽然说起来较为简单,但其能处理的情况还是比较多的,而最为常用的一种线性分类器就是所谓的支持向量机(Support Vector Machine,简称SVM):其基本原理就是构建一个(对于而分类而

机器学习之支持向量机(三):核函数和KKT条件的理解

注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对偶函数的对偶因子α:第二部分是SMO算法对于对偶因子的求解:第三部分是核函数的原理与应用,讲核函数的推理及常用的核函数有哪些:第四部分是支持向量机的应用,按照机器学习实战的代码详细解读. 1 核函数 1.1 核函数的定义 设χ是输入空间(欧氏空间或离散集合),Η为特征空间(希尔伯特空间),如果存在一

机器学习之支持向量机(四):支持向量机的Python语言实现

注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对偶函数的对偶因子α:第二部分是SMO算法对于对偶因子的求解:第三部分是核函数的原理与应用,讲核函数的推理及常用的核函数有哪些:第四部分是支持向量机的应用,按照机器学习实战的代码详细解读. 1 数据样本集的介绍 这篇文章是根据<机器学习实战>一书的实例进行代码的详细解读,我在查找这方面的资料没有人对

机器学习(十一) 支持向量机 SVM(上)

一.什么是支撑向量机SVM (Support Vector Machine) SVM(Support Vector Machine)指的是支持向量机,是常见的一种判别方法.在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别.分类以及回归分析. Vapnik等人在多年研究统计学习理论基础上对线性分类器提出了另一种设计最佳准则.其原理也从线性可分说起,然后扩展到线性不可分的情况.甚至扩展到使用非线性函数中去,这种分类器被称为支持向量机(Support Vector Machine,简称SV

吴裕雄--天生自然python机器学习:支持向量机SVM

基于最大间隔分隔数据 import matplotlib import matplotlib.pyplot as plt from numpy import * xcord0 = [] ycord0 = [] xcord1 = [] ycord1 = [] markers =[] colors =[] fr = open('F:\\machinelearninginaction\\Ch06\\testSet.txt')#this file was generated by 2normalGen.

机器学习之支持向量机(Support Vector Machine)(更新中...)

支持向量机 支持向量机(support vector machines,SVMs)是一种二类分类模型.它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机:支持向量机还包括核技巧,这使它成为实质上的非线性分类器.支持向量机的学习策略就是间隔最大化,可形式化为一个求解凸二次规划(convex quadratic programming)的问题. 支持向量机学习方法包含构建由简至繁的模型:线性可分支持向量机(linear support vector machine in

机器学习:支持向量机

拉格朗日乘子法 那些年学过的高数 关键词:高数课本 拉格朗日乘子法如何理解? 关键词:解释形象 关于凸优化的一些简单概念 关键词: 为什么凸优化这么重要 关键词:显示不是凸函数,我们这能假设是凸函数,这样我们求得的局部最优才是全局最优 支持向量机 系列教程 关键词: