linux及安全第八周总结

进程的调度时机与进程的切换

操作系统原理中介绍了大量进程调度算法,这些算法从实现的角度看仅仅是从运行队列中选择一个新进程,选择的过程中运用了不同的策略而已。

对于理解操作系统的工作机制,反而是进程的调度时机与进程的切换机制更为关键。

进程调度的时机

  • 中断处理过程(包括时钟中断、I/O中断、系统调用和异常)中,直接调用schedule(),或者返回用户态时根据need_resched标记调用schedule();
  • 内核线程可以直接调用schedule()进行进程切换,也可以在中断处理过程中进行调度,也就是说内核线程作为一类的特殊的进程可以主动调度,也可以被动调度;
  • 用户态进程无法实现主动调度,仅能通过陷入内核态后的某个时机点进行调度,即在中断处理过程中进行调度。

进程的切换

  • 为了控制进程的执行,内核必须有能力挂起正在CPU上执行的进程,并恢复以前挂起的某个进程的执行,这叫做进程切换、任务切换、上下文切换;
  • 挂起正在CPU上执行的进程,与中断时保存现场是不同的,中断前后是在同一个进程上下文中,只是由用户态转向内核态执行;
  • 进程上下文包含了进程执行需要的所有信息
    • 用户地址空间: 包括程序代码,数据,用户堆栈等
    • 控制信息 :进程描述符,内核堆栈等
    • 硬件上下文(注意中断也要保存硬件上下文只是保存的方法不同)
  • schedule()函数选择一个新的进程来运行,并调用context_switch进行上下文的切换,这个宏调用switch_to来进行关键上下文切换
    • next = pick_next_task(rq, prev);//进程调度算法都封装这个函数内部
    • context_switch(rq, prev, next);//进程上下文切换
    • switch_to利用了prev和next两个参数:prev指向当前进程,next指向被调度的进程

Linux系统的一般执行过程

最一般的情况:正在运行的用户态进程X切换到运行用户态进程Y的过程

  1. 正在运行的用户态进程X
  2. 发生中断——save cs:eip/esp/eflags(current) to kernel stack,then load cs:eip(entry of a specific ISR) and ss:esp(point to kernel stack).
  3. SAVE_ALL //保存现场
  4. 中断处理过程中或中断返回前调用了schedule(),其中的switch_to做了关键的进程上下文切换
  5. 标号1之后开始运行用户态进程Y(这里Y曾经通过以上步骤被切换出去过因此可以从标号1继续执行)
  6. restore_all //恢复现场
  7. iret - pop cs:eip/ss:esp/eflags from kernel stack
  8. 继续运行用户态进程Y 

几种特殊情况

  • 通过中断处理过程中的调度时机,用户态进程与内核线程之间互相切换和内核线程之间互相切换,与最一般的情况非常类似,只是内核线程运行过程中发生中断没有进程用户态和内核态的转换;
  • 内核线程主动调用schedule(),只有进程上下文的切换,没有发生中断上下文的切换,与最一般的情况略简略;
  • 创建子进程的系统调用在子进程中的执行起点及返回用户态,如fork;
  • 加载一个新的可执行程序后返回到用户态的情况,如execve;

Linux操作系统架构和系统执行过程

操作系统的基本概念

操作系统:任何计算机系统包含的一个基本的程序集合

  • 内核(进程管理、进程调度、进程间通讯机制、内存管理、中断异常处理、文件系统、I/O系统、网络部分)
  • 其他程序(函数库、shell程序、系统程序等等)

操作系统的目的

  • 与硬件交互,管理所有的硬件资源
  • 为用户程序(应用程序)提供一个良好的执行环境

典型的linux操作系统的结构

最简单也是最复杂的操作ls

CPU执行指令

内存在执行指令过程中

实验:使用gdb跟踪分析schedule函数执行过程

时间: 2024-10-18 14:02:51

linux及安全第八周总结的相关文章

Linux内核设计第八周 ——进程的切换和系统的一般执行过程

Linux内核设计第八周 ——进程的切换和系统的一般执行过程 第一部分 知识点总结

LINUX内核分析第八周学习总结——进程的切换和系统的一般执行过程

LINUX内核分析第八周学习总结——进程的切换和系统的一般执行过程 黄韧(原创作品转载请注明出处) <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.知识概要 Linux中进程调度的基本概念与相关知识 schedule函数如何实现进程调度 Linux进程的执行过程(一般情况与特殊情况) 宏观描述Linux系统执行 二.学习笔记 (一)进程切换的关键代码switch_to分析 进程进度与进程调度的时机分析 1.

linux学习作业-第八周

本周作业内容: 1.请描述网桥.集线器.二层交换机.三层交换机.路由器的功能.使用场景与区别. 网桥是早期的两端口二层网络设备,用来连接不同网段.网桥的两个端口分别有一条独立的交换信道,不是共享一条背板总线,可隔离冲突域. 与交换机一样可以隔离冲突域,可只有2个端口,交换机可有多个比集线器接口数少,无路由功能 集线器 是指将多条以太网双绞线或光纤集合连接在同一段物理介质下的设备.集线器是运作在OSI模型中的物理层.它可以视作多端口的中继器,若它侦测到碰撞,它会提交阻塞信号.无路由功能.不可隔离冲

Linux内核设计第八周学习总结 理解进程调度时机跟踪分析进程调度与进程切换的过程

陈巧然 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.视频内容 Linux系统的一般执行过程 最一般的情况:正在运行的用户态进程X切换到运行用户态进程Y的过程 1. 正在运行的用户态进程X 2. 发生中断——save cs:eip/esp/eflags(current) to kernel stack, then load cs:eip(entry of a specific IS

【linux基础】第八周作业

1.请描述网桥.集线器.二层交换机.三层交换机.路由器的功能.使用场景与区别. 网桥 集线器 二层交换机 三层交换机 路由器 功能 连接连个不同的网段 多端口的中继器,数据信号广播转发 工作在数据链路层,数据寻址交换 工作在网络层,具有转发功能 NAT,网关设备,用于分割网络 使用场景 正在退出 信号整合放大 局域网内部 局域网内部 局域网到互联网入口 区别 功能不同且工作在不同的层次和场景 2.IP地址的分类有哪些?子网掩码的表示形式及其作用 范围 子网掩码 形式 作用 A 1.0.0.0-1

linux内核分析 第八周读书笔记

第四章 进程调度 4.1 多任务 1.多任务操作系统就是能同时并发的交互执行多个进程的操作系统. 2.多任务操作系统使多个进程处于堵塞或者睡眠状态,实际不被投入执行,这些任务尽管位于内存,但是并不处于可运行状态. 3.多任务系统分类: (1)非抢占式多任务 (2)抢占式多任务 4.Linux提供了抢占式的多任务模式.在此模式下,由调度程序来决定什么时候停止一个进程的运行,以便其他进程能够得到执行机会.这个强制的挂起动作叫做抢占.进程被抢占之前能够运行的时间是预先设置好的,叫进程的时间片.时间片实

linux内核分析第八周-理解进程调度时机跟踪分析进程调度与进程切换的过程

实验原理: 一.调度时机 不同类型的进程有不同的调度需求 第一种分类: I/O-bound 频繁的进行I/O 通常会花费很多时间等待I/O操作的完成 CPU-bound 计算密集型 需要大量的CPU时间进行运算 第二种分类 批处理进程(batch process) 不必与用户交互,通常在后台运行 不必很快响应 典型的批处理程序:编译程序.科学计算 实时进程(real-time process) 有实时需求,不应被低优先级的进程阻塞 响应时间要短.要稳定 典型的实时进程:视频/音频.机械控制等 交

linux内核分析 第八周 理解进程调度时机跟踪分析进程调度与进程切换的过程

笔记: 实验:使用gdb跟踪分析一个schedule()函数

20135302魏静静——linux课程第八周实验及总结

linux课程第八周实验及总结 实验及学习总结 1. 进程切换在内核中的实现 linux中进程切换是很常见的一个操作,而这个操作是在内核中实现的. 实现的时机有以下三个时机: 中断处理过程(包括时钟中断.I/O中断.系统调用和异常)中,直接调用schedule(),或者返回用户态时根据need_resched标记调用schedule(): 内核线程可以直接调用schedule()进行进程切换,也可以在中断处理过程中进行调度,也就是说内核线程作为一类的特殊的进程可以主动调度,也可以被动调度: 用户