Algorithm --> 二分图

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define MAX 1001

int path[MAX][MAX] = {0};
int c[MAX] = {0};

int group[MAX] = {0};

int count = 0;
int N, E;
int value[3] = {0, 2, 1};

int partition(int start);
int getNoGroup(int * pt)
{
    for (int i = 1; i <= N; i++)
    {
        if (!group[i])
        {
            *pt = i;
            return 1;
        }
    }

    return 0;
}

int main(void)
{
    freopen("input3.txt", "r", stdin);
    //freopen("output.txt", "w", stdout);

    for(int test_case = 1; test_case <= 10; test_case++)
    {
        scanf("%d %d\n", &N, &E);
        for(int i = 0; i < E; i++)
        {
            int pt1, pt2;
            scanf("%d %d", &pt1, &pt2);
            path[pt1][c[pt1]++] = pt2;
            path[pt2][c[pt2]++] = pt1;
        }

        int start = 0;
        bool errorFlag = false;
        while(getNoGroup(&start))
        {
            group[start] = 2;
            if(!partition(start))
            {
                errorFlag = true;
                break;
            }
        }

        if(errorFlag)printf("#%d -1\n", test_case);
        else
        {
            printf("#%d %d", test_case, count);
            for(int i = 1; i <= N; i++)if(group[i] == 1)printf(" %d", i);
            printf("\n");
        }

        memset(group, 0, MAX*4);
        memset(path, 0, MAX*MAX*4);
    }

    return 0;
}

int partition(int start)
{
    for(int i = 0; i < c[start]; i++)
    {
        int city = path[start][i];
        if(group[city] != 0)
        {
            if(group[city] == group[start])return 0;
        }
        else
        {
            group[city] = value[group[start]];
            if (group[city] == 1)count++;
            if(!partition(city))return 0;
        }
    }

    return 1;
}

dijkstra:

#include <stdio.h>

#define MAX 6
#define MAX_VALUE 65536

typedef struct Node
{
    int id;      //节点id
    int distance;  //到c1的距离
    bool visited;//该点是否被访问
    int parent;  // 父节点
}Node;

int v[MAX + 1][MAX + 1] = { 0 };//连接表
Node q[100]; //处理队列
int cur = 0; //尾指针
Node pts[MAX + 1];//标记每个点状态

void insert(Node it)
{
    int i = 0;
    for (i = 0; i < cur; i++)
    {
        if (it.distance > q[i].distance)
        {
            break;
        }
    }
    for (int j = cur - 1; j >= i; j--)
    {
        q[j + 1] = q[j];
    }
    q[i] = it;
    cur++;
}

void Dijkstra(int s)
{
    for (int i = 1; i <= MAX; i++)
    {
        pts[i].id = i;
        pts[i].distance = MAX_VALUE;
        pts[i].visited = false;
        pts[i].parent = 0;
    }

    pts[s].distance = 0;
    q[cur++] = pts[s];
    while (cur!=0)
    {
        cur--;
        Node c = q[cur];
        if (pts[c.id].visited)continue;
        pts[c.id].visited = true;
        for (int i = 1; i <= MAX; i++)
        {
            if (i == c.id)continue;
            if (pts[i].visited)continue;
            if (v[c.id][i] == MAX_VALUE)continue;
            if (pts[i].distance > pts[c.id].distance + v[c.id][i])
            {
                pts[i].distance = pts[c.id].distance + v[c.id][i];
                pts[i].parent = c.id;
                insert(pts[i]);
            }
        }
    }
}

void initV(void)
{
    for (int i = 1; i <= MAX; i++)
        for (int j = 1; j <= MAX; j++)
        {
            v[i][j] = MAX_VALUE;
        }
}
int a[10] = { 5, 3, 9, 8, 1, 2, 7, 6, 4, 0 };

void qsort(int begin, int end)
{
    if (begin >= end)return;

    int left = begin;
    int right = end;
    int key = a[left];
    while (left < right)
    {
        while ((left < right) && (a[right] <= key))right--;
        a[left] = a[right];
        while ((left < right) && (a[left] >= key))left++;
        a[right] = a[left];
    }
    a[left] = key;
    qsort(begin, left-1);
    qsort(left+1, end);
}

void printPathDijkstra()
{
    for (int i = 1; i <= MAX; i++)
    {
        printf("%d %d\n", pts[i].id, pts[i].distance);
    }
    for (int i = 1; i <= MAX; i++)
    {
        int path[MAX] = {0};
        int step = 0;
        int cur = i;
        do
        {
            path[step++] = cur;
            cur = pts[cur].parent;
        } while (cur != 0);
        for (int j = step - 1; j >= 0; j--)
        {
            printf("%d ", path[j]);
        }
        printf("\n");
    }
}

int main(int argc, char** argv)
{
    freopen("input.txt", "r", stdin);
    int N;
    scanf("%d\n", &N);

    qsort(0, 9);
    for (int case_num = 0; case_num < N; case_num++)
    {
        initV();
        int line_num;
        scanf("%d\n", &line_num);
        for (int i = 0; i < line_num; i++)
        {
            int pt1, pt2, distance;
            scanf("%d %d %d", &pt1, &pt2, &distance);
            v[pt1][pt2] = distance;
            v[pt2][pt1] = distance;
        }
         Dijkstra(1);
         printPathDijkstra();
    }
}

floyd:

#include <stdio.h>
#define MAX 6
#define MAX_VALUE 65536

int v[MAX + 1][MAX + 1] = { 0 };
int p[MAX + 1][MAX + 1] = { 0 };
void Floyd()
{
    v[1][1] = 0;
    for (int k = 1; k <= MAX; k++)
    for (int i = 1; i <= MAX; i++)
    for (int j = 1; j <= MAX; j++)
        if (v[i][k] + v[k][j]<v[i][j])
        {
            v[i][j] = v[i][k] + v[k][j];
            p[i][j] = k;
        }
}

void initV(void)
{
    for (int i = 1; i <= MAX; i++)
        for (int j = 1; j <= MAX; j++)
        {
            v[i][j] = MAX_VALUE;
        }
}
void printPathFloyd()
{
    printf("%d\n", v[1][6]);
    int path[10];
    int end = 0;
    int curValue = 6;
    while (curValue != 0)
    {
        path[end++] = curValue;
        curValue = p[1][curValue];
    }
    for (int j = end - 1; j >= 0; j--)
    {
        printf("%d ", path[j]);
    }
    printf("\n");
}

int main(int argc, char** argv)
{
    freopen("input.txt", "r", stdin);
    int N;
    scanf("%d\n", &N);

    for (int case_num = 0; case_num < N; case_num++)
    {
        initV();
        int line_num;
        scanf("%d\n", &line_num);
        for (int i = 0; i < line_num; i++)
        {
            int pt1, pt2, length;
            scanf("%d %d %d", &pt1, &pt2, &length);
            v[pt1][pt2] = length;
            v[pt2][pt1] = length;
        }
        Floyd();
        printPathFloyd();
    }
}

最短路径:

1
10
1 2 4
1 3 8
2 3 3
2 4 4
2 5 6
3 4 2
3 5 2
4 5 4
4 6 9
5 6 4

二分图检测:

9 8
4 1 1 2 2 3 7 2 1 5 8 4 5 8 8 9
7 10
1 2 2 3 1 6 4 6 2 4 2 7 2 5 6 7 3 5 5 7
15 22
7 3 9 8 1 10 1 15 8 3 9 11 5 12 8 4 1 4 13 7 14 11 12 8 6 8 2 8 15 8 7 15 8 10 14 5 8 13 11 2 8 14 6 5
21 26
8 7 10 21 5 4 18 11 5 12 10 6 9 3 15 16 16 10 17 11 12 2 20 3 7 2 19 4 13 4 13 10 15 6 12 19 8 3 7 20 14 11 9 11 4 21 17 3 12 1 7 1
40 57
6 22 22 23 36 21 18 19 4 5 33 36 19 16 5 2 36 38 17 37 11 12 30 19 11 21 5 39 25 27 29 22 11 28 4 10 10 17 37 1 33 11 8 37 10 1 14 10 36 35 24 19 9 26 36 31 27 37 34 6 11 2 16 9 38 34 7 37 5 12 23 19 34 31 29 34 34 35 5 28 13 9 22 3 32 37 34 3 30 9 40 11 8 25 20 19 20 9 22 18 5 14 39 10 32 10 36 40 15 9 22 24 7 25
50 49
23 12 49 43 18 12 18 25 22 29 27 8 6 33 17 34 20 33 5 3 8 25 3 21 37 27 41 19 28 5 15 44 34 49 27 4 13 33 22 30 31 35 1 18 16 9 48 25 27 6 5 7 44 39 42 36 11 35 3 50 27 31 36 32 2 8 16 22 47 26 28 24 6 16 5 10 15 38 45 18 5 6 14 13 9 40 28 36 5 34 44 6 6 26 46 3 41 33
50 1225
12 26 26 36 49 31 21 3 30 28 21 48 43 6 48 20 15 45 16 24 37 40 35 20 30 9 49 16 31 48 37 47 29 18 44 28 36 25 38 43 12 16 32 45 31 46 34 38 29 30 42 29 27 20 40 16 31 25 14 43 2 10 10 3 39 44 43 17 44 26 18 19 4 17 50 11 14 9 35 9 6 40 25 27 38 20 1 49 3 24 21 44 36 22 1 47 50 7 21 4 3 26 12 50 25 42 48 26 23 27 16 38 22 20 36 10 5 41 29 32 42 1 26 17 33 32 26 31 21 16 48 37 35 41 21 33 31 3 9 10 35 36 48 13 16 30 41 45 26 14 26 25 36 42 10 14 21 45 6 28 44 31 15 1 6 32 6 27 45 10 20 34 23 20 39 43 7 23 13 49 25 48 11 8 4 5 29 4 21 32 25 46 46 19 22 9 33 22 38 22 34 36 6 20 30 46 31 32 31 41 27 16 14 7 2 6 48 49 50 8 13 20 27 21 10 16 33 39 1 34 9 25 13 29 50 41 29 36 12 22 1 18 12 35 13 30 5 16 45 39 27 50 25 7 46 40 37 39 3 13 12 9 23 50 33 24 37 36 3 22 39 14 33 2 18 23 42 37 29 27 8 48 5 8 50 6 40 24 26 49 14 18 36 8 46 38 7 46 11 46 11 3 6 11 41 28 23 48 17 5 12 40 15 44 8 38 21 6 7 21 49 36 2 21 4 49 28 20 39 32 25 41 11 31 30 47 32 16 17 22 9 45 38 21 16 34 30 15 11 9 38 9 10 37 23 3 18 27 4 8 32 27 50 37 24 35 29 10 25 2 2 27 10 23 36 1 1 41 41 6 14 36 23 15 21 49 48 4 5 37 14 27 44 1 16 6 50 39 38 42 21 19 48 5 29 47 39 7 14 42 35 38 35 14 39 12 48 14 37 45 15 28 29 6 10 6 7 12 35 18 42 24 13 37 32 35 38 27 11 22 41 38 15 7 21 1 43 10 41 9 35 23 32 24 38 29 18 38 47 38 50 24 33 13 42 26 13 23 40 45 27 12 16 8 35 5 25 44 26 22 41 24 50 25 45 13 8 40 40 5 43 46 36 13 6 18 37 6 14 31 9 15 14 23 23 33 48 33 17 50 24 37 45 46 18 2 13 11 20 8 13 22 33 4 19 43 11 37 7 29 19 35 28 23 7 27 16 4 2 16 30 7 18 47 50 32 33 26 11 23 25 34 9 27 48 12 36 50 31 1 25 29 16 15 32 36 32 48 19 37 4 22 20 18 14 5 25 37 36 46 49 43 24 23 1 25 34 14 31 6 4 18 21 10 24 30 9 42 4 36 25 15 12 28 14 28 37 18 7 47 44 27 13 27 1 10 36 41 34 40 2 36 38 10 50 35 24 6 26 20 45 50 17 16 9 13 14 46 39 34 5 28 13 34 4 39 33 46 45 36 4 47 45 19 13 6 1 50 9 5 26 32 42 8 23 42 2 41 47 20 13 46 16 36 49 3 25 40 19 47 32 38 4 15 4 7 2 15 15 38 15 8 8 14 36 39 45 33 44 10 18 39 6 25 46 8 4 40 41 34 35 22 40 48 2 40 31 27 12 24 26 15 28 25 1 38 33 43 21 24 30 8 11 26 28 50 6 30 30 11 50 3 29 43 31 10 28 4 21 43 48 41 48 50 22 10 6 45 30 27 5 24 28 2 1 20 16 35 17 28 16 26 15 43 24 15 42 3 41 19 4 32 44 12 18 24 31 28 38 23 22 49 32 44 2 44 28 47 35 13 14 25 1 30 22 44 19 16 22 47 10 49 9 48 48 10 12 15 32 12 40 31 8 19 1 33 18 15 43 41 15 5 39 25 35 25 45 22 12 3 37 21 47 49 8 34 20 25 7 36 30 3 43 25 40 19 40 49 5 22 25 47 31 13 36 44 15 41 6 22 44 47 2 8 22 31 29 34 38 3 15 48 39 21 21 18 19 1 23 45 46 2 9 32 21 40 42 47 5 32 43 24 43 5 45 25 25 24 44 40 3 46 46 24 47 12 7 37 31 36 11 10 29 49 20 12 3 37 28 39 35 42 3 27 9 37 26 5 36 48 15 42 41 47 25 32 28 13 29 22 14 15 34 5 28 49 32 15 19 49 16 44 44 14 31 34 22 7 50 40 47 3 18 41 7 19 20 41 34 24 12 11 11 41 26 24 7 17 8 24 18 10 36 18 28 33 19 27 9 31 4 43 22 48 24 27 3 7 39 30 16 29 30 49 1 40 21 15 4 31 8 13 5 45 22 21 29 40 9 40 48 43 3 25 14 3 48 19 41 27 42 50 29 24 18 49 30 41 2 31 18 30 29 15 16 20 47 14 27 35 24 22 30 32 2 14 42 31 38 13 8 44 24 10 43 47 36 33 38 30 17 39 8 28 32 2 19 29 24 48 32 34 46 18 12 14 19 25 6 33 49 27 43 27 7 18 25 17 4 25 46 35 10 13 41 44 35 8 46 5 41 32 7 13 47 11 36 9 28 10 5 25 35 48 42 2 9 46 17 33 1 8 49 39 35 43 50 15 14 45 2 7 44 7 41 8 27 28 10 32 34 42 21 5 46 10 18 13 14 6 9 50 12 6 1 17 44 17 42 30 2 43 33 11 44 11 16 14 9 6 20 32 18 16 13 39 4 19 23 5 43 1 35 11 2 11 21 41 26 9 36 5 26 2 12 8 15 33 41 39 20 39 40 17 47 32 49 37 32 1 32 46 8 39 14 30 23 43 21 36 28 18 44 34 46 4 13 40 14 4 46 27 44 42 38 45 18 50 49 25 47 34 10 26 37 14 3 9 29 44 15 34 3 39 23 19 44 19 1 5 10 17 38 25 11 32 38 19 33 44 21 8 36 43 41 42 30 34 50 19 7 24 34 3 20 31 20 36 17 45 9 28 33 14 6 34 10 8 24 47 11 24 1 4 40 18 42 39 26 19 8 43 44 38 48 47 24 4 17 46 24 2 8 9 12 30 3 36 37 31 27 48 3 2 42 16 29 12 28 29 45 1 1 27 46 1 11 21 2 47 13 5 32 22 6 1 19 5 33 40 37 2 42 49 28 24 19 20 35 49 20 50 31 50 22 27 29 26 20 7 42 18 48 34 6 23 5 3 34 49 1 3 38 50 25 10 45 49 21 20 5 50 13 41 26 40 38 24 1 14 5 2 37 15 8 31 50 47 7 40 43 26 10 50 29 48 7 42 36 40 15 49 6 49 10 15 1 35 18 17 46 26 18 9 23 25 39 11 28 34 3 16 8 6 28 11 9 47 36 23 24 49 42 28 23 31 7 28 34 27 35 17 37 33 38 6 18 45 48 38 8 23 6 7 29 2 17 13 28 40 21 23 14 32 35 34 13 21 36 12 41 29 29 37 47 40 7 49 17 14 46 41 30 5 28 22 35 28 48 17 16 31 19 2 47 46 36 27 37 35 13 43 4 44 28 21 38 28 48 7 15 47 1 7 22 42 45 7 27 10 48 46 5 39 33 47 20 11 20 29 38 7 34 50 30 2 9 34 20 43 2 35 11 38 32 28 47 6 43 34 1 22 47 35 21 9 12 5 48 11 19 6 36 19 19 39 5 47 21 50 21 14 31 39 50 4 33 5 29 35 32 17 17 6 30 21 40 27 32 7 28 36 17 42 16 43 48 39 20 33 25 30 39 24 42 45 45 27 24 17 12 10 13 50 27 42 19 15 45 48 23 47 46 37 25 12 1 39 29 8 21 31 17 49 3 20 30 40 17 20 24 1 33 29 37 27 25 22 23 29 38 26 11 42 6 36 31 24 35 40 7 43 45 3 43 50 16 33 9 19 40 20 15 35 7 26 43 45 20 14 45 20 16 50 48 42 26 13 20 15 40 42 45 44 35 26 45 8 38 39 22 34 13 15 39 6 4 3 21 34 2 13 16 23 24 19 9 1 16 28 31 33 4 45 41 40 37 23 25 13 21 42 19 12 7 8 9 23 32 43 19 42 21 25 42 43 33 7 27 17 9 17 30 20 40 39 29 21 13 32 28 46 8 47 30 17 39 29 39 9 37 38 5 27 9 16 43 18 21 35 34 33 20 2 15 11 27 39 45 16 8 25 45 35 49 46 45 2 9 49 44 13 14 19 48 18 12 13 37 20 35 10 41 22 2 48 16 13 48 1 49 8 20 10 30 45 50 22 2 12 4 10 17 41 2 1 6 46 16 39 43 30 2 23 30 35 34 26 20 49 33 41 39 2 20 46 15 39 44 24 32 23 26 30 6 4 14 41 49 23 46 29 34 17 38 2 36 11 20 42 13 24 18 34 19 30 16 48 28 26 17 21 31 30 13 4 41 12 34 10 1 37 27 47 19 17 37 44 23 26 1 28 9 7 37 8 5 6 41 7 20 44 38 14 24 20 48 3 30 10 1 29 21 47 30 44 20 4 22 23 43 11 36 24 39 10 10 7 46 44 16 37 38 33 36 15 17 36 9 33 44 35 44 6 42 4 1 26 22 8 10 33 33 8 27 15 14 11 5 49 1 13 11 16 11 19 49 41 38 36 50 26 20 5 34 46 48 30 45 47 2 50 29 50 47 16 19 28 23 1 17 29 41 16 49 11 33 19 19 10 43 12 11 25 22 43 39 26 45 12 43 37 9 4 35 39 10 47 17 15 41 4 50 46 29 14 31 12 16 46 30 36 12 46 11 40 43 40 49 14 30 4 3 35 26 18 19 32 20 9 12 4 30 33 27 8 24 14 37 28 25 16 40 14 17 12 8 26 2 34 15 6 29 3 34 4 10 5 12 18 4 11 5 29 15 40 43 28 5 38 32 49 13 14 42 12 23 30 45 29 49 33 11 34 8 32 13 19 46 15 27 11 41 23 33 25 28 48 23 17 3 33 44 49 25 18 11 7 37 30 43 9 12 23 47 13 1 12 23 40 23 44 24 9 50 14 46 39 3 32 23 34 44 3 1 16 33 35 22 46 4 2 31 47 42 32 40 3 31 7 8 17 4 27 35 31 4 35 36 47 31 45 19 3 7 35 17 3 46 23 26 37 12 49 27 26 18 44 12 38 42 5 6 35 46 21 34 19 11 1 22 2 5 18 4 38 22 16 9 29 42 13 23 39 48 44 31 5 12 37 7 16 22 40 2 17 44 5 40 38 47 26 11 29 4 26 6 3 21 12 9 44 33 18 28 3 33 50 18 22 31 17 37 34 41 26 17 38 3 43 45 11 18 31 10 41 19 22 42 33 49 38 45 24 43 44 47 17 37 17 40 32 37 4 22 30 4 23 39 22 27 33 31 19 31 15 15 22 29 31 18 32 9 2 41 37 5 11 5 7 26 6 34 45 18 8 32 37 49 50 12 34 30 50 33 12 31 38 49 2 50 44 26 45 42 6 46 42 10 40 47 39 3 8 26 21 31 43 37 22 42 10 17 11 22 14 45 28 41 3 11 18 3 18 7 34 15 3 48 6
30 31
2 15 11 4 26 9 5 16 5 6 23 12 30 10 22 21 19 6 21 28 20 14 16 2 17 24 27 14 25 26 13 22 7 29 22 8 17 1 24 20 3 18 23 28 11 18 4 25 30 8 10 15 1 9 19 29 7 12 13 3 8 27
50 602
13 23 31 12 21 36 19 40 24 16 3 23 43 23 10 24 50 29 20 39 2 46 9 4 25 6 37 45 4 31 39 37 41 13 34 22 13 17 44 39 27 8 47 49 9 32 40 20 19 15 18 42 14 34 18 17 46 34 25 11 38 32 16 13 25 36 41 21 11 13 31 48 25 5 18 1 44 12 18 29 45 9 4 19 3 30 31 8 18 5 50 41 20 8 36 5 47 23 13 10 40 31 9 38 10 50 36 33 35 10 44 14 33 43 10 43 43 11 49 36 24 6 4 7 37 27 20 34 7 2 18 16 8 37 49 16 32 45 50 24 42 33 12 14 41 35 48 32 21 47 23 6 31 39 36 18 31 27 49 25 7 15 6 3 24 47 7 46 42 17 44 9 42 35 38 15 47 41 28 38 11 21 14 15 28 27 33 10 11 29 8 28 25 29 8 4 31 14 25 42 27 48 46 32 16 10 34 32 16 11 33 13 11 6 35 1 45 46 16 33 48 39 29 5 45 22 24 11 40 34 37 15 28 14 19 8 45 34 45 8 47 33 38 27 40 8 8 12 37 46 7 8 6 43 45 19 16 50 3 18 12 40 16 1 1 17 28 12 8 26 24 43 50 35 9 8 11 41 37 9 49 33 17 16 33 35 45 15 23 50 49 21 24 30 5 13 22 31 12 34 46 48 9 26 42 43 33 30 49 6 43 16 20 2 5 42 4 12 49 10 3 16 7 40 7 26 19 26 11 47 41 49 22 37 4 37 41 16 39 2 50 43 12 9 11 5 45 44 1 47 26 34 45 48 23 49 17 21 7 28 11 17 12 26 41 6 15 22 9 15 48 7 11 10 3 25 15 39 4 26 10 21 22 19 40 26 32 12 9 7 38 31 37 26 14 40 46 31 22 26 3 33 42 29 9 46 5 21 42 16 25 10 39 12 50 11 41 30 46 28 14 20 39 19 50 47 16 30 23 18 40 28 31 34 50 17 40 45 1 41 32 19 15 26 40 32 22 8 30 47 24 21 34 15 24 3 29 10 44 46 29 47 19 38 25 47 38 8 49 17 36 42 11 35 45 2 9 2 4 2 43 18 27 2 41 25 27 44 16 6 27 45 37 28 22 39 3 36 19 34 5 43 29 41 13 50 2 8 48 38 29 24 21 30 42 3 5 49 48 37 4 22 42 13 20 28 6 42 28 45 47 10 23 33 42 24 39 9 50 5 23 41 30 36 41 18 2 38 32 2 6 33 35 3 17 6 32 31 46 4 38 45 15 28 42 47 45 4 14 7 43 49 37 32 43 17 17 30 24 1 3 11 20 37 11 49 27 32 48 15 40 39 19 7 47 36 23 29 43 35 10 5 3 21 37 44 13 24 43 41 24 36 1 11 13 3 30 29 32 44 18 11 4 40 2 34 12 2 2 37 35 49 33 11 28 2 36 13 27 20 48 26 24 18 36 50 1 3 27 12 50 42 20 12 17 35 12 10 31 37 15 40 20 7 7 45 9 20 17 24 40 38 21 6 27 46 9 34 36 17 19 12 43 36 4 27 28 26 26 45 42 30 41 10 7 34 30 35 27 39 1 5 23 5 18 21 39 38 44 19 20 46 17 29 2 14 14 4 31 28 41 42 25 24 2 44 24 5 32 14 48 2 39 46 38 34 14 22 39 28 7 22 34 28 21 16 21 23 12 22 25 43 32 4 41 24 8 48 12 46 22 32 1 49 8 14 41 36 26 46 3 43 5 30 30 50 17 33 28 19 19 46 5 16 23 25 30 6 20 4 16 35 22 38 34 37 4 44 49 50 22 27 29 36 25 17 6 18 46 40 15 27 49 24 48 9 37 7 31 20 33 25 19 48 38 7 26 31 25 35 38 44 26 32 40 9 1 33 18 30 27 14 42 10 1 10 49 30 15 46 31 15 46 8 33 41 39 8 27 7 41 5 37 40 49 42 4 34 14 37 14 38 23 16 16 29 7 31 17 23 6 1 23 36 28 22 9 31 11 23 40 44 18 13 30 1 4 39 6 50 48 22 19 14 23 10 1 23 4 48 33 24 44 34 30 23 33 29 25 30 35 23 35 36 43 13 5 35 48 34 45 39 28 48 42 11 25 21 1 36 19 2 6 10 17 3 2 31 47 16 29 49 24 35 20 44 1 25 16 25 26 14 7 44 40 27 6 29 49 3 7 32 21 29 9 28 1 29 5 47 18 33 40 2 42 1 28 44 29 43 20 15 14 48 23 24 6 35 44 26 30 43 39 7 7 12 22 40 32 15 3 10 45 14 14 39 33 21 18 35 21 1 15 12 1 43 12 45 20 26 35 29 22 2 6 47 35 47 4 15 38 4 3 5 40 48 38 26 44 15 9 27 20 22 20 32 30 11 13 6 48 44 10 30 5 33 41 3 8 15 21 13 48 12 12 38 10 17 2 26 38 20 3 29 6 5 6 36 47 13 27 19 9 22 32 28 20 19 19 9 14 9 26 39 13 29 23 42 43 21 18 49 22 44 13 49 36 10 8 44 38 37 50 33 20 48 31 45 25 50 35 21 8 34 27 43 17 47 42 21 31 19 34 27 11 36 2 15 50 18 5 17 32 8 44 31 38 46 12 37 13 25 39 32 28 4 35 13 50 1 30 13 1 13 47 18 19 37 46 14 18 25 16 36 3 50 22 46 27 26 18 10 3 47 45 20 50 21 34 39 43 47 41 17
20 38
7 9 6 20 6 2 2 19 8 6 11 19 3 4 8 2 7 10 1 5 2 11 2 15 17 16 15 18 12 20 17 2 2 3 2 7 12 2 2 9 20 2 14 16 4 2 2 1 14 13 16 2 2 5 18 2 10 2 17 3 13 11 18 1 13 2 10 12 15 9 8 19 4 5 14 2
50 143
37 25 8 11 17 11 49 17 15 17 5 48 38 17 35 17 4 44 18 1 38 42 13 8 20 31 17 21 48 32 17 10 10 34 49 47 17 43 47 8 9 17 8 17 17 5 47 22 47 45 45 40 47 3 39 17 41 16 7 47 47 50 40 28 5 30 40 47 23 42 11 28 23 17 17 7 47 13 17 44 47 23 45 17 47 20 47 43 17 3 27 17 17 12 48 47 29 47 47 11 18 43 25 26 25 17 46 47 9 15 17 20 49 24 26 47 30 22 17 33 2 47 47 37 17 31 17 30 14 46 7 36 47 21 47 33 17 48 31 47 34 49 27 47 41 47 38 47 26 17 47 34 39 47 36 47 4 47 12 14 17 16 15 47 3 20 44 47 35 47 17 6 22 17 17 41 34 17 18 47 17 42 14 17 47 42 18 17 17 32 12 47 40 17 27 29 23 7 17 4 36 17 9 13 39 41 43 50 16 33 19 47 6 47 19 3 17 13 45 21 32 39 27 24 47 10 25 47 36 37 47 32 26 2 15 50 1 46 30 47 38 21 47 14 17 1 17 37 24 47 47 1 24 17 29 33 12 31 47 9 17 29 47 28 17 19 6 4 17 28 5 47 50 17 16 47 2 17 2 6 10 19 17 46 44 35

二分图最大匹配:

5
3 4
3 1 2 3
1 2
2 1 3
10 10
3 1 7 8
3 5 9 10
3 3 6 10
3 5 6 9
3 4 5 8
3 1 8 10
2 3 8
2 4 8
3 2 3 6
3 4 6 7
15 15
2 12 13
2 1 11
2 8 12
2 7 9
2 12 15
2 6 8
2 5 12
2 12 14
2 10 12
2 3 4
2 11 13
2 10 11
2 8 15
2 8 15
2 13 14
50 50
2 12 30
2 18 43
2 11 46
2 30 37
2 25 28
2 2 49
2 26 36
2 3 27
2 23 50
2 2 50
2 17 22
2 47 48
2 8 11
2 41 49
2 6 18
2 18 43
2 36 48
2 8 36
2 22 31
2 6 37
2 39 49
2 5 25
2 25 31
2 24 27
2 4 27
1 25
2 21 43
2 1 23
2 22 31
2 37 42
2 35 40
2 5 37
2 20 40
2 1 45
2 11 32
2 6 10
2 10 20
2 34 44
2 10 40
2 18 44
2 37 42
2 19 29
2 13 41
2 30 44
2 13 21
2 2 30
2 5 34
2 25 38
2 23 33
2 25 34
1 0
0
5 5
1 1
1 2
1 3
1 4
1 5

christmas

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <vector>
using namespace std;

#define MAX 401

int map[MAX][MAX] = { 0 }; //第i个人的每个礼物的编号
int c[MAX] = { 0 };        //第i个人一共可能连多少个礼物
int check[MAX] = { 0 };    //表示当前第i个人已经遍历过的礼物编号
int matching[MAX] = { 0 }; //礼物和人匹配的状态

bool dfs(int u)
{
    for (int i = 0; i < c[u]; i++)
    {
        int v = map[u][i];
        if (!check[v])
        {
            check[v] = true;
            if(matching[v] == 0 || dfs(matching[v]))
            {
                matching[v] = u;
                matching[u] = v;
                return true;
            }
        }
    }
    return false;
}

int main(int argc, char** argv)
{
    freopen("input.txt", "r", stdin);
    int case_max;
    scanf("%d\n", &case_max);
    for(int case_num = 0; case_num < case_max; case_num++)
    {
        int personCnt, giftCnt;
        scanf("%d %d\n", &personCnt, &giftCnt);
        for(int i = 1; i <= personCnt; i++)
        {
            int favoriteCnt;
            scanf("%d ", &favoriteCnt);
            for(int j = 1; j <= favoriteCnt; j++)
            {
                int favorite;
                scanf("%d", &favorite);
                //map[i].push_back(personCnt+favorite);
                map[i][c[i]++] = personCnt + favorite;
                map[personCnt + favorite][c[personCnt + favorite]++] = i;
            }
        }

        int result = 0;
        for(int i = 1; i <= personCnt; i++)
        {
            if (matching[i] == 0)
            {
                memset(check, 0, sizeof(check));
                if(dfs(i))result++;
            }
        }

        printf("%d\n", result);

        memset(map, 0, sizeof(int)*MAX*MAX);
    }
} 

test:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define MAX 1001

int path[MAX][MAX] = {0};
int c[MAX] = {0};

int group[MAX] = {0};

int count = 0;
int N, E;
int value[3] = {0, 2, 1};

int partition(int start);
int getNoGroup(int * pt)
{
    for (int i = 1; i <= N; i++)
    {
        if (!group[i])
        {
            *pt = i;
            return 1;
        }
    }

    return 0;
}

void DFS(int v, int g)
{
    if(g == 0)
        group[v] = 2;

    if(flag)
        return;

    int i = 0;
    while(path[v][i])
    {
        int city = path[v][i];
        if(g == 1 || g == 0)
        {
            if(group[city] == 0)
            {
                group[i] = 1;
                DFS(i, 1);
            }
            else if(group[i] == 1)
            {
                flag = true;
            }
        }
        else if(g == 2)
        {
            if(group[city] == 0)
            {
                group[i] = 1;
                DFS(i, 1);
            }
            else if(group[i] == 2)
            {
                flag = true;
            }
        }

        i++;
    }
}

int main(void)
{
    freopen("input3.txt", "r", stdin);
    //freopen("output.txt", "w", stdout);

    for(int test_case = 1; test_case <= 10; test_case++)
    {
        scanf("%d %d\n", &N, &E);
        for(int i = 0; i < E; i++)
        {
            int pt1, pt2;
            scanf("%d %d", &pt1, &pt2);
            path[pt1][c[pt1]++] = pt2;
            path[pt2][c[pt2]++] = pt1;
        }

        int start = 0;
        bool errorFlag = false;
        bool flag = false;

        for(int i = 1; i <= N; i++)
        {
            if(group[i] == 0)
                DFS(i, 0);
        }

        if(errorFlag)printf("#%d -1\n", test_case);
        else
        {
            printf("#%d %d", test_case, count);
            for(int i = 1; i <= N; i++)if(group[i] == 1)printf(" %d", i);
            printf("\n");
        }

        memset(group, 0, MAX*4);
        memset(path, 0, MAX*MAX*4);
    }

    return 0;
}

int partition(int start)
{
    for(int i = 0; i < c[start]; i++)
    {
        int city = path[start][i];
        if(group[city] != 0)
        {
            if(group[city] == group[start])return 0;
        }
        else
        {
            group[city] = value[group[start]];
            if (group[city] == 1)count++;
            if(!partition(city))return 0;
        }
    }

    return 1;
}
时间: 2024-10-06 06:40:32

Algorithm --> 二分图的相关文章

POJ 1325 二分图匹配/匈牙利算法

Machine Schedule Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11922 Accepted: 5077 Description As we all know, machine scheduling is a very classical problem in computer science and has been studied for a very long history. Scheduling p

bzoj4025 二分图

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4025 [题解] 考虑对时间分治,用可撤回的启发式合并并查集来维护连通性. 二分图的条件是没有奇环,用并查集判即可. 对于时间区间[l,r],如果边在这期间都存在,那么就加入并查集,对于剩下的边分类,并且分治下去做. 对于每条边,在log个区间表示出来了,需要进行判断,启发式合并的getf是log的,所以复杂度为O(nlog^2n) # include <stdio.h> # includ

POJ2584 T-Shirt Gumbo 二分图匹配(网络流)

1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 5 const int inf=0x3f3f3f3f; 6 const int sink=30; 7 8 struct Edge 9 { 10 int to; 11 int next; 12 int capacity; 13 14 void assign(int t,int n,int c) 15 { 16 to=t; next=n; ca

二分图【模板】

二分图:原图G的顶点可以分类两个集合X和Y,所有的边关联的两个顶点恰好一个属于集合X,另一个属于集合Y,则称该图为二分图. 二分图匹配:给定一个二分图G,在G的一个子图M中,M的边集中的任意两条边都不依附于同一个顶点,即一个顶点最多只有一条边.则称M是一个匹配. 二分图最大匹配:图中包含边数最多的匹配称为图的最大匹配. 二分图完美匹配:如果所有点都在匹配边上,则称这个最大匹配是完美匹配. 二分图多重匹配:二分图匹配一对一匹配,这里允许集合Y中的一个元素和集合X中的多个元素匹配(一般有最大限制N)

NYOJ 237 游戏高手的烦恼 &amp;&amp; POJ3041-Asteroids ( 二分图的最大匹配 )

链接: NYOJ 237  游戏高手的烦恼:click here~~ POJ  3041 Asteroids           :click here~~ 题意: 两题一样,翻译不同而已. 有一位传说级游戏高手,在闲暇时间里玩起了一个小游戏,游戏中,一个n*n的方块形区域里有许多敌人,玩家可以使用炸弹炸掉某一行或者某一列的所有敌人.他是种玩什么游戏都想玩得很优秀的人,所以,他决定,使用尽可能少的炸弹炸掉所有的敌人. 现在给你一个游戏的状态,请你帮助他判断最少需要多少个炸弹才能炸掉所有的敌人吧.

HDU 1045 Fire Net 二分图Bipartite题解

本题可以使用DFS直接爆搜出答案,不过这样类型的题目其实是个二分图的题解. 这个二分图,难不在Hungary算法,而是难在于建图.需要挺高的抽象思维的. 建图: 1 把同一行不被X分开的格子标同一个号码,被X分开的标下一个号码,这样做是为了缩点,不需要把所有的格子都分开标号,而且可以更方便建个更加小的图. 2 同理把同一列的格子标号 3 然后判断相同一个格子的行标号和列标号是有路径的,其他不在同一个格子的都是没有路径的. 4 这样就等于以行标号和列标号作为左右顶点,构建成一个二分图了 然后使用H

图论——LCA、强联通分量、桥、割顶、二分图最大匹配、网络流

A: 交通运输线 时间限制: 5 Sec  内存限制: 128 MB 题目描述 战后有很多城市被严重破坏,我们需要重建城市.然而,有些建设材料只能在某些地方产生.因此,我们必须通过城市交通,来运送这些材料的城市.由于大部分道路已经在战争期间完全遭到破坏,可能有两个城市之间没有道路.当然在运输线中,更不可能存在圈. 现在,你的任务来了.给你战后的道路情况,我们想知道,两个城市之间是否存在道路,如果存在,输出这两个城市之间的最短路径长度. 输入 第一行一个整数Case(Case<=10)表示测试数据

HDU 5971 Wrestling Match (二分图)

题意:给定n个人的两两比赛,每个人要么是good 要么是bad,现在问你能不能唯一确定并且是合理的. 析:其实就是一个二分图染色,如果产生矛盾了就是不能,否则就是可以的. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #

BZOJ 1854 游戏(二分图匹配或并查集)

此题的二分图匹配做法很容易想,就是把属性当做s集,武器当做t集,如果该武器拥有该武器则连一条边. 那么答案就是求该二分图的最大前i个匹配.将匈牙利算法改一改,当前找不到增广路就break. 但是过这个题需要常数优化,不能每次都fillchar一遍used数组.可以用队列将使用的used点加入,然后需要初始化的时候弹出即可. # include <cstdio> # include <cstring> # include <cstdlib> # include <i