牛客网青蛙变态跳台阶问题

function jumpFloorII(number)
{
    // write code here
    var result = [0,1,2];
    var methodNum = 0;
    var n1 = 1;
    var n2 = 2;
    var temp = 0;
    if(number <=0){
        return 0;
    }else if(number === 1){
        return 1;
    }else if(number === 2){
        return 2;
    }else{
        /*for(var i = 3;i <= number;i++){
           for(var j = 1;j < i;j++){
                temp += result[j];
            }
            result[i] = temp + 1;
            //methodNum += result[i];
        }*/
        //methodNum = result[number];
        return 2 * jumpFloorII(number-1);
    }
}
module.exports = {
    jumpFloorII : jumpFloorII
};

关于本题,前提是n个台阶会有一次n阶的跳法。分析如下:

f(1) = 1

f(2) = f(2-1) + f(2-2)         //f(2-2) 表示2阶一次跳2阶的次数。

f(3) = f(3-1) + f(3-2) + f(3-3)

...

f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n)

说明:

1)这里的f(n) 代表的是n个台阶有一次1,2,...n阶的 跳法数。

2)n = 1时,只有1种跳法,f(1) = 1

3) n = 2时,会有两个跳得方式,一次1阶或者2阶,这回归到了问题(1) ,f(2) = f(2-1) + f(2-2)

4) n = 3时,会有三种跳得方式,1阶、2阶、3阶,

那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3)

因此结论是f(3) = f(3-1)+f(3-2)+f(3-3)

5) n = n时,会有n中跳的方式,1阶、2阶...n阶,得出结论:

f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + ... + f(n-1)

6) 由以上已经是一种结论,但是为了简单,我们可以继续简化:

f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)

f(n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1) = f(n-1) + f(n-1)

可以得出:

f(n) = 2*f(n-1)

7) 得出最终结论,在n阶台阶,一次有1、2、...n阶的跳的方式时,总得跳法为:

| 1       ,(n=0 )

f(n) =     | 1       ,(n=1 )

| 2*f(n-1),(n>=2)

时间: 2024-10-22 08:31:12

牛客网青蛙变态跳台阶问题的相关文章

面试题10.2:青蛙变态跳台阶

题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 编程思想 因为n级台阶,第一步有n种跳法:跳1级.跳2级.到跳n级跳1级,剩下n-1级,则剩下跳法是f(n-1)跳2级,剩下n-2级,则剩下跳法是f(n-2)所以f(n)=f(n-1)+f(n-2)+...+f(1)因为f(n-1)=f(n-2)+f(n-3)+...+f(1)所以f(n)=2*f(n-1)=2^(n-1) 编程实现 class Solution { publ

剑指offer9:青蛙变态跳台阶,1,2,3……,n。

1. 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 2. 思路和方法 每个台阶都有跳与不跳两种情况(除了最后一个台阶),最后一个台阶必须跳.所以共用2^(n-1)中情况.换个表述可能更容易懂一点:小鸟要从起点0飞到终点N.中间有1~n-1个点可以中途停靠休息,它可以休息可以不休息,休息次数不限.问,到终点时,一共有多少种情况. 实现放方法: F(n) = F(n-1)+F(n-2)+...+F(1):F(n-1) = F

斐波那契数列与跳台阶问题以及变态跳台阶

1.跳台阶问题:(其实就是很纯粹的斐波那契数列问题)比较倾向于找规律的解法,f(1) = 1, f(2) = 2, f(3) = 3, f(4) = 5,  可以总结出f(n) = f(n-1) + f(n-2)的规律,但是为什么会出现这样的规律呢?假设现在6个台阶,我们可以从第5跳一步到6,这样的话有多少种方案跳到5就有多少种方案跳到6,另外我们也可以从4跳两步跳到6,跳到4有多少种方案的话,就有多少种方案跳到6,其他的不能从3跳到6什么的啦,所以最后就是f(6) = f(5) + f(4):

[剑指Offer]2.变态跳台阶

题目 一仅仅青蛙一次能够跳上1级台阶,也能够跳上2级--它也能够跳上n级. 求该青蛙跳上一个n级的台阶总共同拥有多少种跳法. 思路 用Fib(n)表示青蛙跳上n阶台阶的跳法数,设定Fib(0) = 1: 当n = 1 时. 仅仅有一种跳法,即1阶跳,即Fib(1) = 1; 当n = 2 时. 有两种跳的方式,一阶跳和二阶跳,即Fib(2) = Fib(1) + Fib(0) = 2; 当n = 3 时.有三种跳的方式,第一次跳出一阶台阶后,后面还有Fib(3-1)中跳法,第一次跳出二阶台阶后.

牛客网剑指Offer习题集题解0

https://www.nowcoder.com/ta/coding-interviews 牛客个人界面欢迎互fo 0x00 二维数组中的查找 没啥难得,直接上二分就好了.注意二分别写挫了. 时间复杂度为\(O(nlogn)\) class Solution { public: bool Find(int target, vector<vector<int> > array) { int siz = (int)array.size(); for(int i=0;i<siz;+

网易2017秋招编程题集合-牛客网

网易2017秋招编程题集合-牛客网 链接:https://www.nowcoder.com/questionTerminal/0147cbd790724bc9ae0b779aaf7c5b50来源:牛客网 如果一个数字序列逆置之后跟原序列是一样的就称这样的数字序列为回文序列.例如: {1, 2, 1}, {15, 78, 78, 15} , {112} 是回文序列, {1, 2, 2}, {15, 78, 87, 51} ,{112, 2, 11} 不是回文序列. 现在给出一个数字序列,允许使用一

剑指OFFER之变态跳台阶(九度OJ1389)

题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入包括一个整数n(1<=n<=50). 输出: 对应每个测试案例, 输出该青蛙跳上一个n级的台阶总共有多少种跳法. 样例输入: 6 样例输出: 32 解题思路: 这道题目跟之前的跳台阶大同小异,只是跳台阶的阶数从1变到了n,也就是说,不再是跳一下或者跳两下的问题,而是跳n下的问题.那么解题的思路显然还得逆向分析,我们

变态跳台阶(递归算法)

台阶的级数:1,2,3,4,5,6..... 对应的跳法:1,2,4,8,16,32.... 最终结论 在n阶台阶,一次有1.2....n阶的跳的方式时,总得跳法为: | 1 ,(n=0 ) f(n) = | 1 ,(n=1 ) | 2*f(n-1) ,(n>=2) package suanfati; /* * 变态跳台阶 * 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级. * 求该青蛙跳上一个n级的台阶总共有多少种跳法. * 递归算法 */ public class Hig

网易2017秋招编程题集合_以下代码全部来自牛客网

如果一个数字序列逆置之后跟原序列是一样的就称这样的数字序列为回文序列.例如:{1, 2, 1}, {15, 78, 78, 15} , {112} 是回文序列, {1, 2, 2}, {15, 78, 87, 51} ,{112, 2, 11} 不是回文序列.现在给出一个数字序列,允许使用一种转换操作:选择任意两个相邻的数,然后从序列移除这两个数,并用这两个数字的和插入到这两个数之前的位置(只插入一个和).现在对于所给序列要求出最少需要多少次操作可以将其变成回文序列. 链接:https://ww