分类算法:决策树(C4.5)(转)

C4.5是机器学习算法中的另一个分类决策树算法,它是基于ID3算法进行改进后的一种重要算法,相比于ID3算法,改进有如下几个要点:

1)用信息增益率来选择属性。ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,ID3使用的是熵(entropy, 熵是一种不纯度 度量准则),也就是熵的变化值,而C4.5用的是信息增益率。

2)在决策树构造过程中进行剪枝,因为某些具有很少元素的结点可能会使构造的决策树过适应(Overfitting),如果不考虑这些结点可能会更好。

3)对非离散数据也能处理。

4)能够对不完整数据进行处理

如何计算信息增益率?
熟悉了ID3算法后,已经知道如何计算信息增益,计算公式如下所示(来自Wikipedia):

或者,用另一个更加直观容易理解的公式计算:

  • 按照类标签对训练数据集D的属性集A进行划分,得到信息熵:

  • 按照属性集A中每个属性进行划分,得到一组信息熵:

  • 计算信息增益

然后计算信息增益,即前者对后者做差,得到属性集合A一组信息增益:

这样,信息增益就计算出来了。

  • 计算信息增益率

下面看,计算信息增益率的公式,如下所示(来自Wikipedia):

其中,IG表示信息增益,按照前面我们描述的过程来计算。而IV是我们现在需要计算的,它是一个用来考虑分裂信息的度量,分裂信息用来衡量属性分 裂数据的广度和均匀程序,计算公式如下所示(来自Wikipedia):

简化一下,看下面这个公式更加直观:

其中,V表示属性集合A中的一个属性的全部取值。

举例分析

我们以一个很典型被引用过多次的训练数据集D为例,来说明C4.5算法如何计算信息增益并选择决策结点。

上面的训练集有4个属性,即属性集合A={OUTLOOK, TEMPERATURE, HUMIDITY, WINDY};而类标签有2个,即类标签集合C={Yes, No},分别表示适合户外运动和不适合户外运动,其实是一个二分类问题。

我们已经计算过信息增益,这里直接列出来,如下所示:

数据集D包含14个训练样本,其中属于类别“Yes”的有9个,属于类别“No”的有5个,则计算其信息熵:

1 Info(D) = -9/14 * log2(9/14) - 5/14 * log2(5/14) = 0.940

下面对属性集中每个属性分别计算信息熵,如下所示:

1 Info(OUTLOOK) = 5/14 * [- 2/5 * log2(2/5) – 3/5 * log2(3/5)] + 4/14 * [ - 4/4 * log2(4/4) - 0/4 * log2(0/4)] + 5/14 * [ - 3/5 * log2(3/5) – 2/5 * log2(2/5)] = 0.694
2 Info(TEMPERATURE) = 4/14 * [- 2/4 * log2(2/4) – 2/4 * log2(2/4)] + 6/14 * [ - 4/6 * log2(4/6) - 2/6 * log2(2/6)] + 4/14 * [ - 3/4 * log2(3/4) – 1/4 * log2(1/4)] = 0.911
3 Info(HUMIDITY) = 7/14 * [- 3/7 * log2(3/7) – 4/7 * log2(4/7)] + 7/14 * [ - 6/7 * log2(6/7) - 1/7 * log2(1/7)] = 0.789
4 Info(WINDY) = 6/14 * [- 3/6 * log2(3/6) – 3/6 * log2(3/6)] + 8/14 * [ - 6/8 * log2(6/8) - 2/8 * log2(2/8)] = 0.892

根据上面的数据,我们可以计算选择第一个根结点所依赖的信息增益值,计算如下所示:

1 Gain(OUTLOOK) = Info(D) - Info(OUTLOOK) = 0.940 - 0.694 = 0.246
2 Gain(TEMPERATURE) = Info(D) - Info(TEMPERATURE) = 0.940 - 0.911 = 0.029
3 Gain(HUMIDITY) = Info(D) - Info(HUMIDITY) = 0.940 - 0.789 = 0.151
4 Gain(WINDY) = Info(D) - Info(WINDY) = 0.940 - 0.892 = 0.048

接下来,我们计算分裂信息度量H(V):

  • OUTLOOK属性

属性OUTLOOK有3个取值,其中Sunny有5个样本、Rainy有5个样本、Overcast有4个样本,则

1 H(OUTLOOK) = - 5/14 * log2(5/14) - 5/14 * log2(5/14) - 4/14 * log2(4/14) = 1.577406282852345
  • TEMPERATURE属性

属性TEMPERATURE有3个取值,其中Hot有4个样本、Mild有6个样本、Cool有4个样本,则

1 H(TEMPERATURE) = - 4/14 * log2(4/14) - 6/14 * log2(6/14) - 4/14 * log2(4/14) = 1.5566567074628228
  • HUMIDITY属性

属性HUMIDITY有2个取值,其中Normal有7个样本、High有7个样本,则

1 H(HUMIDITY) = - 7/14 * log2(7/14) - 7/14 * log2(7/14) = 1.0
  • WINDY属性

属性WINDY有2个取值,其中True有6个样本、False有8个样本,则

1 H(WINDY) = - 6/14 * log2(6/14) - 8/14 * log2(8/14) = 0.9852281360342516

根据上面计算结果,我们可以计算信息增益率,如下所示:

1 IGR(OUTLOOK) = Gain(OUTLOOK) / H(OUTLOOK) = 0.246/1.577406282852345 = 0.15595221261270145
2 IGR(TEMPERATURE) = Gain(TEMPERATURE) / H(TEMPERATURE) = 0.029 / 1.5566567074628228 = 0.018629669509642094
3 IGR(HUMIDITY) = Gain(HUMIDITY) / H(HUMIDITY) = 0.151/1.0 = 0.151
4 IGR(WINDY) = Gain(WINDY) / H(WINDY) = 0.048/0.9852281360342516 = 0.048719680492692784

根据计算得到的信息增益率进行选择属性集中的属性作为决策树结点,对该结点进行分裂。

总结

C4.5算法的优点是:产生的分类规则易于理解,准确率较高。
C4.5算法的缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。

时间: 2024-10-13 20:19:18

分类算法:决策树(C4.5)(转)的相关文章

经典分类算法——决策树

决策树是一种自顶向下的递归方法,其基本思想是以信息熵为度量构造一棵熵值下降最快的树,到叶子节点处的熵值为零,此时每个叶节点中的实例都属于一类. 决策树学习算法优点是,它可以自学习.在学习过程中,不需要使用者了解过多背景知识,只需要对实例进行较好的标注,就能够进行学习.决策树属于有监督学习.从一类无序.无规则的事物中推理决策树表示的分类规则.       决策树的建立 建立决策树的关键是,在当前状态下选择哪个属性作为分类依据.根据不同的目标函数,建立决策树主要有三种算法: ID3 (信息增益) C

转载:算法杂货铺——分类算法之决策树(Decision tree)

作者:张洋 算法杂货铺——分类算法之决策树(Decision tree) 2010-09-19 16:30 by T2噬菌体, 44346 阅读, 29 评论, 收藏, 编辑 3.1.摘要 在前面两篇文章中,分别介绍和讨论了朴素贝叶斯分类与贝叶斯网络两种分类算法.这两种算法都以贝叶斯定理为基础,可以对分类及决策问题进行概率推断.在这一篇文章中,将讨论另一种被广泛使用的分类算法——决策树(decision tree).相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置,因此在实际

决策树-C4.5算法(三)

在上述两篇的文章中主要讲述了决策树的基础,但是在实际的应用中经常用到C4.5算法,C4.5算法是以ID3算法为基础,他在ID3算法上做了如下的改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足,公式为GainRatio(A): 2) 在树构造过程中进行剪枝: 3) 能够完成对连续属性的离散化处理: 4) 能够对不完整数据进行处理. C4.5算法与其它分类算法如统计方法.神经网络等比较起来有如下优点:产生的分类规则易于理解,准确率较高.其缺点是:在构造树的过

用Python开始机器学习(2:决策树分类算法)

http://blog.csdn.net/lsldd/article/details/41223147 从这一章开始进入正式的算法学习. 首先我们学习经典而有效的分类算法:决策树分类算法. 1.决策树算法 决策树用树形结构对样本的属性进行分类,是最直观的分类算法,而且也可以用于回归.不过对于一些特殊的逻辑分类会有困难.典型的如异或(XOR)逻辑,决策树并不擅长解决此类问题. 决策树的构建不是唯一的,遗憾的是最优决策树的构建属于NP问题.因此如何构建一棵好的决策树是研究的重点. J. Ross Q

决策树分类算法(ID3)

1. 什么是决策树/判定树(decision tree)? 判定树是一个类似于流程图的树结构:其中,每个内部结点表示在一个属性上的测试,每个分支代表一个属性输出,而每个树叶结点代表类或类分布.树的最顶层是根结点. 2.  机器学习中分类方法中的一个重要算法 3.  构造决策树的基本算法 3.1 熵(entropy)概念: 信息和抽象,如何度量? 1948年,香农提出了 "信息熵(entropy)"的概念 一条信息的信息量大小和它的不确定性有直接的关系,要搞清楚一件非常非常不确定的事情,

SparkMLlib分类算法之决策树学习

(一) 决策树的基本概念 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法.由于这种决策分支画成图形很像一棵树的枝干,故称决策树.在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系.Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵.这一度量是基于信息学理论中熵的概念.通过信息增益来筛

02-22 决策树C4.5算法

目录 决策树C4.5算法 一.决策树C4.5算法学习目标 二.决策树C4.5算法详解 2.1 连续特征值离散化 2.2 信息增益比 2.3 剪枝 2.4 特征值加权 三.决策树C4.5算法流程 3.1 输入 3.2 输出 3.3 流程 四.决策树C4.5算法的优缺点 4.1 优点 4.2 缺点 五.小结 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ 决策树C4.5算

决策树ID3算法[分类算法]

ID3分类算法的编码实现 1 <?php 2 /* 3 *决策树ID3算法(分类算法的实现) 4 */ 5 6 /* 7 *把.txt中的内容读到数组中保存 8 *$filename:文件名称 9 */ 10 11 //-------------------------------------------------------------------- 12 function gerFileContent($filename) 13 { 14 $array = array(NULL); 15

机器学习中的算法——决策树模型组合之随机森林与GBDT

前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的. 美国金融银行业的大数据算法:随机森林模型+综合模型 模型组合(比如说有Boosting,Bagging等)与决策树相关的算法比较多,这些算法最终的结果是生成N(可能会有几百棵以上)棵树,这样可以大大的减少单决策树带来的毛病,有

分类算法总结

      目前看到的比较全面的分类算法,总结的还不错.       主要分类方法介绍解决分类问题的方法很多[40-42] ,单一的分类方法主要包括:决策树.贝叶斯.人工神经网络.K-近邻.支持向量机和基于关联规则的分类等:另外还有用于组合单一分类方法的集成学习算法,如Bagging和Boosting等.      (1)决策树       决策树是用于分类和预测的主要技术之一,决策树学习是以实例为基础的归纳学习算法,它着眼于从一组无次序.无规则的实例中推理出以决策树表示的分类规则.构造决策树的