二维数组最大子数组

一.题目:

返回一个二维整数数组中最大子数组的和。 要求: 输入一个二维整形数组,数组里有正数也有负数。 二维数组中连续的一个子矩阵组成一个子数组,每个子数组都有一个和。 求所有子数组的和的最大值。要求时间复杂度为O(n)。

二:结对编程要求:

两人结对完成编程任务。 一人主要负责程序分析,代码编程。 一人负责代码复审和代码测试计划。 发表一篇博客文章讲述两人合作中的过程、体会以及如何解决冲突(附结对开发的工作照)。

三.代码:

#include <iostream>
#include <cstring>
//#include<vector>
//#include<cstdio>
#define NDEBUG
#include <assert.h>
//#define INF -9999
//#define N 100
//?宏定义与设置全局变量有什么区别
const int N = 500;
const int INF = -9999;
using namespace std;

int maxSubArray(int a[], int n)
{
assert(a!=NULL && n>0);
int cur = 0;
int max = INF;

for (int i=0; i<n; i++)
{
cur +=a[i];
if (cur < 0)
{
cur = 0;
}

if (cur > max)
{
max = cur;
}
}
return max;
}
int findMaxSubMatrix(int a[][N], int n) //?为什么这里是a[][N]
{
int tmpSum[N];
int max = INF;

//枚举所有行的可能组合
for (int i=0; i<n; i++)
{
//将tmpSum清零
memset(tmpSum, 0, sizeof(tmpSum));
for (int j=i; j<n; j++)
{
//加上当前行的元素
for(int k=0; k<n; k++)
{
tmpSum[k] += a[j][k];
}
int tmpMax = maxSubArray(tmpSum, n);
if(tmpMax >max)
{
max=tmpMax;
}
}
}
return max;
}

int main()
{
int a[N][N];
int n; //数组的大小
cout<<"请输入数组n*n中n的大小: "<<endl;
while (cin>>n && n)
{
for (int i=0; i<n; i++)
{
for (int j=0; j<n; j++)
{
int k=rand();
a[i][j]= k%2==0 ?rand()%100+1:(-rand()%100+1);
}
}
for (int i=0; i<n; i++)
{
for (int j=0; j<n; j++)
{
cout<<a[i][j]<<" ";
}
cout<<endl;
}
cout<<"最大子数组的和为: "<<findMaxSubMatrix(a, n)<<endl;
}

return 0;
}

四.思想:

程序中涉及到的两个函数:

1.assert(a!=NULL && n>0);

assert宏的原型定义在<assert.h>中,其作用是如果它的条件返回错误,则终止程序执行,原型定义:
#include <assert.h>
void assert( int expression );
assert的作用是现计算表达式 expression ,如果其值为假(即为0),那么它先向stderr打印一条出错信息,然后通过调用 abort 来终止程序运行。
已放弃使用assert()的缺点是,频繁的调用会极大的影响程序的性能,增加额外的开销。在调试结束后,可以通过在包含#include <assert.h>的语句之前插入 #define NDEBUG 来禁用assert调用,示例代码如下:
#include <stdio.h>
#define NDEBUG
#include <assert.h>
2.
将tmpSum清零      memset(tmpSum, 0, sizeof(tmpSum));

需要的头文件
C中为<memory.h> 或 <string.h>
C++中为<cstring>
void * memset ( void * ptr, int value, size_t num );
为地址ptr开始的num个字节赋值value,注意:是逐个字节赋值,ptr开始的num个字节中的每个字节都赋值为value。
(1) 若ptr指向char型地址,value可为任意字符值;
(2) 若ptr指向非char型,如int型地址,要想赋值正确,value的值只能是-1或0,因为-1和0转化成二进制后每一位都是一样的,设int型占4个字节,则-1=0XFFFFFFFF, 0=0X00000000。
思路:

程序的时间复杂度为O(n^3)。findMaxSubMatrix()找出最大的子数组之和,i控制行,它是一行一行的往下找最大子数组,比如当i等于2时,在同一列的数相当于一维数组中的一个数,每到i加1,调用maxSubArray(int a[], int n)找出这个一维数组的最大子数组之和,再将它与maxnum作比较看哪个更大。

缺陷:时间复杂度还是很大,而且这个最大子数组也没想到怎么输出

4.测试:

当n=4时

当n=50时

五.工作照

时间: 2024-11-08 22:10:42

二维数组最大子数组的相关文章

环形二维数组最大子数组的和

设计思路: 因为之前做过二维数组的和环形一维数组的,所以第一感觉就是能不能把这两种整改一下结合起来,所以采用的做法就是将二维环形变化为一维环形,在此采用的方法是从第一行开始,第一行计算出最大子数组,然后第一行和第二行相加为一维计算最大子数组,然后第一行.第二行和第三行,以此类推,最后将各子数组的最大值进行比较,得到最大的即为子数组和的最大值. 实验代码: //环形一维数组求最大子数组 package erwei; public class oneArray { private int i; pu

软件工程概论---环状二维数组最大子数组和

1,题目要求 根据软件工程概论--<环状一维数组最大子数组和>和<二维数组最大子数组和>两篇博客,求环状二维数组的和. 2,思路设计 根据前面两篇博客思路做参考.在二维数组的基础上扩充二维数组的列为2*col-1.再进行二维数组的求和即可. 3,代码 #include <iostream> #include<time.h> using namespace std; #define max(a,b) ((a)>(b)?(a):(b)) #define M

环状二维数组最大子数组求和

题目:返回一个二维整数数组中最大子数组的和.要求:输入一个二维整形数组,数组里有正数也有负数.二维数组首尾相接,象个一条首尾相接带子一样. n数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和.求所有子数组的和的最大值.要求时间复杂度为O(n). 结对编程要求: 两人结对完成编程任务. 一人主要负责程序分析,代码编程. 一人负责代码复审和代码测试计划. 发表一篇博客文章讲述两人合作中的过程.体会以及如何解决冲突(附结对开发的工作照). 结对开发过程: 这次的编程开发是基于上次的以为数

首尾相连的二维数组最大子数组求和

题目:返回一个二维整数数组中最大子数组的和.要求:输入一个二维整形数组,数组里有正数也有负数.二维数组首尾相接,象个一条首尾相接带子一样. n数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和.求所有子数组的和的最大值.要求时间复杂度为O(n). 结对编程要求: 两人结对完成编程任务. 一人主要负责程序分析,代码编程. 一人负责代码复审和代码测试计划. 发表一篇博客文章讲述两人合作中的过程.体会以及如何解决冲突(附结对开发的工作照). 结对开发过程: 这次的编程开发是基于上次的以为数

编程之美2.15 二维数组最大子数组的和(数组下标从(1,1)开始)

      首先,我们看到这篇文章的题目,我们就会想到之前的那个题目 -- 连续子数组最大和问题.这个问题无疑就是把原问题扩展到二维的情况.       想起来这个问题也不是很难,我们可以求解一维矩阵的思想,即我们可以固定住行(或列),之后,我们去求解列(或行)所构成的最大和就可以了. 这里的解法利用的是固定住行,然后求解需要寻找的列之和,利用书中提到的一个公式: 以左上角的元素(1,1)和当前元素(i,j)为顶点对的子矩阵的部分和,部分和的计算如下 PS[i][j] = A[i][j]+PS[

求二维数组最大子数组的和

结对开发成员:朱少辉,侯涛亮 朱少辉:负责程序分析,代码编程 侯涛亮:负责代码复审和代码测试 设计思路: 根据求一维子数组的最大子数组和的列子,把二维数组分解成若干个一维子数组,如m行n列的数组可分为(m+1)*m/2个子数组,在求每个一维数组的最大子数组和,把这些和放入一个数组中,求这个数组的最大值就是二维数组最大子数组的和.这种算法的时间复杂度为o(n^3). 代码: #include<iostream> using namespace std; void main() { int m,n

返回一个二维整数数组最大子数组的和

 要求: 1,输入一个二维整形数组,数组里有正数也有负数. 2,二维数组中连续的一个子矩阵组成一个子数组,每个子数组都有一个和, 3,求所有子数组的和的最大值. 设计思路: 参照一维整数数组求解最大子数组的方法,我们想着将二维数组通过行不同,列相加的方法转化为一维整数数组再求解最大子数组之和. 具体实现:先求出每一行的最大子数组之和,之后比较得出最大和MaxSum,然后通过上述方法求二行的最大子数组之和并与MaxSum比较,用MaxSum存放较大值.以此类推,求三行,四行... 最后实现最大子数

求一维循环数组最大子数组

设计思路: 一维循环数组:一维整数组头跟尾相连形成一个环. 问题解决方案:将一个一维数组扩大两倍,求新的数组的最大子数组即可. import java.io.IOException; public class xunhuanshuzu { public static void main(String[] args)throws IOException{ int []a= {23,-12,234,-234,123,2,0,1,-1,-34}; int n=a.length; int []b=new

结对开发——返回整数数组最大子数组和2

返回整数数组最大子数组和2 为了实现“敏捷开发”的目的,老师让我们采取“迭代”的方法进行项目的开发,这不,对于周一的求最大子数组和又有了新的要求,如下: 1.延续上次的要求,这里不再赘余… 2.如果数组A[0]……A[j-1]首尾相连,允许A[i-1],……A[n-1],A[0]……A[j-1]之和最大: 3.同时返回最大子数组的位置: 4.要求程序必须能处理1000 个元素,且每个元素是int32 类型的. 一.实验设计思路 首先实现的是数组首尾相连,先存入数组,再将原数组反向存储形成环形数组

求一维循环数组最大子数组的和

结对成员:信1201-1班 于海洋   袁佩佩 一.题目与要求 题目:返回一个整数数组中最大子数组的和. 要求: 输入一个整形数组,数组里有正数也有负数. 数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和.如果数组A[0]……A[j-1]首尾相邻,允许A[i-1], …… A[n-1], A[0]……A[j-1]之和最大. 同时返回最大子数组的位置. 二.设计思路 利用之前的返回一个整数数组最大子数组的和程序的思路,不过这里将数放到一个链表里,首尾相连,来求最大子数组的和. 三.源