[原博客] BZOJ 1257 [CQOI2007] 余数之和

题目链接
题意:
  给定n,k,求 ∑(k mod i) {1<=i<=n} 其中 n,k<=10^9
  即 k mod 1 + k mod 2 + k mod 3 + … + k mod n的值。



我们先来看商之和。
  给定n,k,求∑(k/i) {1<=i<=n} 其中/为整除。



可以得到一个引理,k/i值的个数不超过2*√k
证明:k整除小于√k的数,都会有一个不同的结果;k整除大于√k的数,结果肯定小于√k,所以最多也只能有√k种结果。

于是我们可以枚举结果的取值累加。是O(√k)级别的。

代码可以这样写:

LL sum(LL n,LL k){ //calc sigma(k/i) 1<=i<=n
    LL sum = 0;
    for(LL i = 1 ; i <= n ; i ++ ){
        LL a = k / i ; LL b = k / a ;
        b = min(b,n) ;
        sum += a * (b-i+1) ;
    }
    return sum;
}

其中ak/i的值,b是最大得到k/i这个值的数,b-i+1为取得同一个值的区间长度。

然后来看余数之和:
我们知道 a mod b == a - a/b*b (整除)。
  于是 ∑(k mod i) {1<=i<=n}就可以写成n*k-∑k/i*i {1<=i<=n}对于k/i值相同的一段,后面那一项是一个等差数列,求和就好了。

/**************************************************************
    Problem: 1257
    User: zrts
    Language: C++
    Result: Accepted
    Time:8 ms
    Memory:1272 kb
****************************************************************/

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>

//by zrt
//problem:
using namespace std;
typedef long long LL;
const int inf(0x3f3f3f3f);
const double eps(1e-9);
LL n,k;
int main(){
    #ifdef LOCAL
    freopen("in.txt","r",stdin);
    freopen("out.txt","w",stdout);
    #endif
    scanf("%lld%lld",&n,&k);
    LL ans=n*k;
    LL sub=0;
    for(int i=1;i<=n&&i<=k;i++){
        LL a=k/i;LL b=k/a;
        b=min(b,n);
        sub+=a*(i+b)*(b-i+1)/2;
        i=b;
    }
    printf("%lld\n",ans-sub);
    return 0;
}

另有一道题:切巧克力。在SegmentFault上有人提问,链接。我的回答就是用了与这个类似的方法。

时间: 2024-10-26 03:19:29

[原博客] BZOJ 1257 [CQOI2007] 余数之和的相关文章

BZOJ 1257: [CQOI2007]余数之和sum【神奇的做法,思维题】

1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 4474  Solved: 2083[Submit][Status][Discuss] Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数.例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3

bzoj 1257: [CQOI2007]余数之和sum 数学 &amp;&amp; 枚举

1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 1779  Solved: 823[Submit][Status] Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数.例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3

BZOJ 1257: [CQOI2007]余数之和sum( 数论 )

n >= k 部分对答案的贡献为 k * (n - k) n < k 部分贡献为 ∑ (k - ⌊k / i⌋ * i)  = ∑  , ⌊k / i⌋ 相等的数是连续的一段, 此时这段连续的数对答案的贡献成等差数列, 可以O(1)求出..然后就分⌊k / i⌋ 相等的一块一块来就行了. 分出来大概是sqrt(k)块.这个sqrt(k)我并不会证Orz...写了个程序验证了一下, 分出来的块数和2 * sqrt(k)非常接近. 所以时间复杂度为O(sqrt(k)) --------------

[BZOJ 1257] [CQOI2007] 余数之和sum 【数学】

题目链接:BZOJ - 1257 题目分析 首先, a % b = a - (a/b) * b,那么答案就是 sigma(k % i) = n * k - sigma(k / i) * i     (1 <= i <= n) 前面的 n * k 很容易算,那么后面的 sigma(k / i) * i,怎么办呢? 我们可以分情况讨论,就有一个 O(sqrtk) 的做法. 1)当 i < sqrtk 时,直接枚举算这一部分. 2)当 i >= sqrtk 时, k / i <=

BZOJ 1257 [CQOI2007]余数之和sum(计数优化)

[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1257 [题目大意] 给出正整数n和k,计算j(n,k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值 [题解] 我们发现k%i=k-[k/i]*i,j(n,k)=n*k-∑[k/i]*i,我们知道[k/i]的取值不超过k^(1/2)个, 并且在分布上是连续的,所以我们可以分段求和,对于段开头l,其段结尾r=k/[k/l]. [代码] #inc

bzoj 1257 : [CQOI2007]余数之和 (数学+分块)

Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值 其中k mod i表示k除以i的余数. 例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7 Input 输入仅一行,包含两个整数n, k. 1<=n ,k<=10^9 Output 输出仅一行,即j(n, k). Sample Input 5 3 Sample

bzoj 1257 [CQOI2007]余数之和——数论分块

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 \( n\%i = n - \left \lfloor n/i \right \rfloor * i \) 注意 n<k 时当前块的右端点可能超过 n ! #include<cstdio> #include<cstring> #include<algorithm> #define ll long long using namespace std; in

bzoj 1257: [CQOI2007]余数之和sum

这是个神题233(一开始想的也差不多,然而不知道为什么觉得复杂度不对,(没想到等差数列,就GG掉了)) 一个数k,k/x=y...?,?构成等差数列,直接o(1)解决,每得出一个y的区间,是[i,last](last见程序,至于为什么,写写看看,挺显然的) 1 #include<bits/stdc++.h> 2 #define N 100005 3 #define LL long long 4 #define inf 0x3f3f3f3f 5 #define ls tr[x][0] 6 #de

BZOJ 1257 [CQOI2007]余数之和sum ——Dirichlet积

[题目分析] 卷积很好玩啊. [代码] #include <cstdio> #include <cstring> #include <cmath> #include <cstdlib> #include <map> #include <set> #include <queue> #include <string> #include <iostream> #include <algorithm&