poj1094Sorting It All Out

题目链接:

啊哈哈,选我

题目:


Sorting It All Out

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 26897   Accepted: 9281

Description

An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will
give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.

Input

Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of
the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character
"<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.

Output

For each problem instance, output consists of one line. This line should be one of the following three:

Sorted sequence determined after xxx relations: yyy...y.

Sorted sequence cannot be determined.

Inconsistency found after xxx relations.

where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.

Sample Input

4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0

Sample Output

Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined.

Source

East Central North America 2001

这个题目对拓扑排序考虑的非常仔细。。

考虑了成环的情况。成环的情况也就是最后存在入度不为0的点。。则计数后最后的num不等于n。。

这个题目还有就是这个题目不是对所有的信息进行综合判断,而是根据前面的如果能够得到已经成环了,或者可以得到n的大小顺序了,则后面的就不用判断了。。。所以用ok1,ok2两个变量进行控制。。。

代码为:

#include<cstdio>
#include<stack>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=26+10;
int n,m;
int in[maxn],Copy[maxn],map[maxn][maxn],temp[maxn];
stack<int>S;
int topo()
{
    int flag=0,num=0;
    while(!S.empty())  S.pop();
    memcpy(Copy,in,sizeof(in));
    for(int i=0;i<n;i++)
    {
        if(Copy[i]==0)
            S.push(i);
    }
    while(!S.empty())
    {
        if(S.size()>1)
            flag=1;
        int Gery=S.top();
        S.pop();
        temp[num++]=Gery;
        for(int i=0;i<n;i++)
        {
            if(map[Gery][i])
            {
                if(--Copy[i]==0)
                   S.push(i);
            }
        }
    }
    if(num!=n)
        return 0;//成环,则已经可以确定关系了,可以标记。
    if(flag)
        return 1;//有多个入度为0的点,则还不确定,继续输入信息,增加条件,看是否能够得到顺序。
    return 2;//顺序已经得到确定。可以标记。
}

int main()
{
    char str[maxn];
    int ok1,ok2,u,v,i,is_n;
    while(~scanf("%d%d",&n,&m),n,m)
    {
        is_n=0;
        memset(in,0,sizeof(in));
        memset(map,0,sizeof(map));
        ok1=ok2=0;
        for(i=1;i<=m;i++)
        {
            scanf("%s",str);
            if(!ok1&&!ok2)
            {
                u=str[0]-'A';
                v=str[2]-'A';
                if(map[u][v]==0)
                {
                    map[u][v]=1;
                    in[v]++;
                }
                int ans=topo();
                if(ans==0)
                {
                    is_n=i;
                    ok2=1;
                }
                else if(ans==2)
                {
                    is_n=i;
                    ok1=1;
                }
            }
        }
        if(ok1)
        {
            printf("Sorted sequence determined after %d relations: ",is_n);
            for(int i=0;i<n-1;i++)
                printf("%c",temp[i]+'A');
            printf("%c.\n",temp[n-1]+'A');
        }
        if(ok2)
            printf("Inconsistency found after %d relations.\n",is_n);
        if(ok1==0&&ok2==0)
          printf("Sorted sequence cannot be determined.\n");
    }
    return 0;
}

poj1094Sorting It All Out,布布扣,bubuko.com

时间: 2024-12-05 09:02:02

poj1094Sorting It All Out的相关文章

POJ--1094--Sorting It All Out【拓扑排序】

链接:http://poj.org/problem?id=1094 题意&思路:直接拓扑排序.多解输出一串英文,有环输出一段英文,唯一解输出一段英文及排序结果. 细节:题目描述不是很清楚,如果不看discuss我肯定要WA出翔. discuss里总结了两点关键的: 1. 输入一条边时如果此时拓扑有解就输出这个解,即使后面的边成有向环也不管了,所以每次输入的时候都得进行拓扑排序. 2. 判断存在有向环应先于判断多解. 这道题主要是题目坑爹. #include<cstring> #incl

POJ1094-Sorting It All Out-拓扑排序

[题目大意]: 给出 A“<”B 的关系图 ①在第i个关系之chu后,得出XXXX ②在第i个关系之后 出现错误(环) ③全部关系之后仍然无法排序 [解题思路]:1.读一个数判断是否是②情况. 2.利用Floyd更新 任意两元素之间关系,当更新数达到(n*n-n)/2 之后,得到①情况. 3.数据全部读入之后,仍没有答案,得到③情况. 1 #include "cstdio" 2 #include "iostream" 3 #include "cstr

poj1094Sorting It All Out 拓扑排序

做拓扑排序的题目,首先要知道两条定理: 1.最后得到的拓扑数组的元素个数如果小于n,则不存在拓扑序列.  (有圈) 2.如果一次入队的入度为零的点数大于1,则拓扑序列不唯一. (关系不确定) 本题有一个默认的东西,如果到了第K(看K<m)步,能唯一确定一个序列,就不用管之后会不会产生矛盾. 这题的思路还是比较清晰的.输入也只有X<Y(只有<符号,并且X,Y都只是大写字母),数据量比较小.不过边数没有限制,用链式前向星的话不太好,还是用邻接矩阵吧.每次用邻接矩阵要注意的是判断重边,做小生成

poj1094Sorting It All Out——拓扑排序

题目:http://poj.org/problem?id=1094 看到此题,首先觉得这是一种层层递进的关系,所以可以想到用拓扑排序: 就像人工排序,每次需要找到一个最小的,再找到新的最小的--所以用有向边代表小的元素到大的元素的关系,每次的入度为0的点就是最小的: 出现错误也就是出现了环,可以看做是拓扑排序过程后还有没有被排到的点,也就是怎样入度都不为0: 因为要输出哪一步,所以就一步一步,每一步上建图.判断等等: 注意因为上一步不能影响下一步,所以排序中不能把真的入度减去. 代码如下: #i