Java并发(具体实例)—— 构建高效且可伸缩的结果缓存

这个例子来自《Java并发编程实战》第五章。本文将开发一个高效且可伸缩的缓存,文章首先从最简单的HashMap开始构建,然后分析它的并发缺陷,并一步一步修复。

hashMap版本

首先我们定义一个Computable接口,该接口包含一个compute()方法,该方法是一个耗时很久的数值计算方法。Memoizer1是第一个版本的缓存,该版本使用hashMap来保存之前计算的结果,compute方法将首先检查需要的结果是否已经在缓存中,如果存在则返回之前计算的值,否则重新计算并把结果缓存在HashMap中,然后再返回。

interface Computable<A, V> {
	V compute(A arg) throws InterruptedException;//耗时计算
}

public class Memoizer1<A, V> implements Computable<A, V> {
	private final Map<A, V> cache = new HashMap<A, V>();
	private final Computable<A, V> c;

	public Memoizer1(Computable<A, V> c) {
		this.c = c;
	}

	public synchronized V compute(A arg) throws InterruptedException {
		V result = cache.get(arg);
		if (result == null) {
			result = c.compute(arg);
			cache.put(arg, result);
		}
		return result;
	}
}

  HashMap不是线程安全的,因此要确保两个线程不会同时访问HashMap,Memoizer1采用了一种保守的方法,即对整个方法进行同步。这种方法能确保线程安全性,但会带来一个明显的可伸缩问题:每次只有一个线程可以执行compute。

ConcurrentHashMap版本

我们可以用ConcurrentHashMap代替HashMap来改进Memoizer1中糟糕的并发行为,由于ConcurrentHashMap是线程安全的,因此在访问底层Map时就不需要进行同步,因此避免了对compute()方法进行同步带来的串行性:

public class Memoizer2 <A, V> implements Computable<A, V> {
    private final Map<A, V> cache = new ConcurrentHashMap<A, V>();
    private final Computable<A, V> c;

    public Memoizer2(Computable<A, V> c) {
        this.c = c;
    }

    public V compute(A arg) throws InterruptedException {
        V result = cache.get(arg);
        if (result == null) {
            result = c.compute(arg);
            cache.put(arg, result);
        }
        return result;
    }
}

  但是这个版本的缓存还是有问题的,如果线程A启动了一个开销很大的计算,而其他线程并不知道这个线程正在进行,那么很可能会重复这个计算。

FutureTask版本1

我们可以在map中存放Future对象而不是最终计算结果,Future对象相当于一个占位符,它告诉用户,结果正在计算中,如果想得到最终结果,请调用get()方法。Future的get()方法是一个阻塞方法,如果结果正在计算中,那么它会一直阻塞到结果计算完毕,然后返回;如果结果已经计算完毕,那么就直接返回。

public class Memoizer3<A, V> implements Computable<A, V> {
	private final Map<A, Future<V>> cache = new ConcurrentHashMap<A, Future<V>>();
	private final Computable<A, V> c;

	public Memoizer3(Computable<A, V> c) {
		this.c = c;
	}

	public V compute(final A arg) throws InterruptedException {
		Future<V> f = cache.get(arg);
		if (f == null) {
			Callable<V> eval = new Callable<V>() {
				public V call() throws InterruptedException {
					return c.compute(arg);
				}
			};
			FutureTask<V> ft = new FutureTask<V>(eval);
			f = ft;
			cache.put(arg, ft);
			ft.run(); // call to c.compute happens here
		}
		try {
			return f.get();
		} catch (ExecutionException e) {
			cache.remove(arg);
		}
		return null;
	}
}

  Memoizer3解决了上一个版本的问题,如果有其他线程在计算结果,那么新到的线程会一直等待这个结果被计算出来,但是他又一个缺陷,那就是仍然存在两个线程计算出相同值的漏洞。这是一个典型的"先检查再执行"引起的竞态条件错误,我们先检查map中是否存在结果,如果不存在,那就计算新值,这并不是一个原子操作,所以两个线程仍有可能在同一时间内调用compute来计算相同的值。

FutureTask版本2

Memoizer3存在这个问题的原因是,复合操作"若没有则添加"不具有原子性,我们可以改用ConcurrentMap中的原子方法putIfAbsent,避免了Memoizer3的漏洞。

public class Memoizer <A, V> implements Computable<A, V> {
    private final ConcurrentMap<A, Future<V>> cache
            = new ConcurrentHashMap<A, Future<V>>();
    private final Computable<A, V> c;

    public Memoizer(Computable<A, V> c) {
        this.c = c;
    }

    public V compute(final A arg) throws InterruptedException {
        while (true) {
            Future<V> f = cache.get(arg);
            if (f == null) {
                Callable<V> eval = new Callable<V>() {
                    public V call() throws InterruptedException {
                        return c.compute(arg);
                    }
                };
                FutureTask<V> ft = new FutureTask<V>(eval);
                f = cache.putIfAbsent(arg, ft);
                if (f == null) {
                    f = ft;
                    ft.run();
                }
            }
            try {
                return f.get();
            } catch (CancellationException e) {
                cache.remove(arg, f);
            } catch (ExecutionException e) {
                throw LaunderThrowable.launderThrowable(e.getCause());
            }
        }
    }
}

  当缓存对象是Future而不是值的时候,将导致缓存污染问题,因为某个计算可能被取消或失败,当出现这种情况时,我们应该把对象从map中移除,然后再重新计算一遍。这个缓存系统的使用十分简单,只需传入一个Computable对象即可构造缓存,要得到计算结果,调用compute()方法即可,该方法会把计算过的结果缓存起来。

总结

相较于第一个版本,最终版本在性能上有了很大提升,ConcurrentHashMap的使用避免了整个方法加锁;FutureTask的使用使计算异步化,同时通过一个Future对象告诉当前线程计算正在进行中,避免了大量重复计算。

时间: 2024-11-03 22:26:06

Java并发(具体实例)—— 构建高效且可伸缩的结果缓存的相关文章

[Java并发编程实战]构建一个高效可复用缓存程序(含代码)

[Java并发编程实战]构建一个高效可复用缓存程序(含代码) 原文地址:https://www.cnblogs.com/chengpeng15/p/9915800.html

java并发编程10.构建自定义的同步工具

创建状态依赖类的最简单方法通常是在类库中现有状态依赖类的基础上进行构造.如果类库中没有提供你需要的功能,可以使用java语言和类库提供的底层机制来构造自己的同步机制,包括内置的条件队列.显示地Condition对象以及AbstractQueuedSynchronizer框架. 在单线程程序中调用方法时,如果基于某个状态的前提条件未得到满足,那么这个条件永远无法成真.而在并发程序中,基于状态的条件可能会由于其他线程的操作而改变. 可阻塞的状态依赖操作 acquire lock on object

Java并发编程实例(synchronized)

此处用一个小程序来说明一下,逻辑是一个计数器(int i):主要的逻辑功能是,如果同步监视了资源i,则不输出i的值,但如果没有添加关键字synchronized,因为是两个线程并发执行,所以会输出i的值,类实现Runnable接口. 下面是run()方法,利用i一次加二,若是奇数则输出,若输出(则为并发编程,共享资源没有被监视),若没有输出(则共享资源被监视,一次只允许一个线程使用),Runnable接口的Run方法如下所示: public void run(){ while(true){ if

《java并发编程实战》读书笔记4--基础构建模块,java中的同步容器类&amp;并发容器类&amp;同步工具类,消费者模式

上一章说道委托是创建线程安全类的一个最有效策略,只需让现有的线程安全的类管理所有的状态即可.那么这章便说的是怎么利用java平台类库的并发基础构建模块呢? 5.1 同步容器类 包括Vector和Hashtable,此外还包括在JDK1.2中添加的一些功能相似的类,这些同步的封装器类由Collections.synchronizedXxx等工厂方法创建的.这些类实现线程安全的方式是:将他们的状态封装起来,并对每个共有方法都进行同步,使得每次只能有一个线程能访问容器的状态. 关于java中的Vect

《Java并发编程实战》/童云兰译【PDF】下载

<Java并发编程实战>/童云兰译[PDF]下载链接: https://u253469.pipipan.com/fs/253469-230062521 内容简介 本书深入浅出地介绍了Java线程和并发,是一本完美的Java并发参考手册.书中从并发性和线程安全性的基本概念出发,介绍了如何使用类库提供的基本并发构建块,用于避免并发危险.构造线程安全的类及验证线程安全的规则,如何将小的线程安全类组合成更大的线程安全类,如何利用线程来提高并发应用程序的吞吐量,如何识别可并行执行的任务,如何提高单线程子

Java并发编程实战(中文版)pdf

下载地址:网盘下载 内容简介  · · · · · · 本书深入浅出地介绍了Java线程和并发,是一本完美的Java并发参考手册.书中从并发性和线程安全性的基本概念出发,介绍了如何使用类库提供的基本并发构建块,用于避免并发危险.构造线程安全的类及验证线程安全的规则,如何将小的线程安全类组合成更大的线程安全类,如何利用线程来提高并发应用程序的吞吐量,如何识别可并行执行的任务,如何提高单线程子系统的响应性,如何确保并发程序执行预期任务,如何提高并发代码的性能和可伸缩性等内容,最后介绍了一些高级主题,

《java并发编程实战》

目录 对本书的赞誉 译者序 前 言 第1章 简介 1.1 并发简史 1.2 线程的优势 1.2.1 发挥多处理器的强大能力 1.2.2 建模的简单性 1.2.3 异步事件的简化处理 1.2.4 响应更灵敏的用户界面 1.3 线程带来的风险 1.3.1 安全性问题 1.3.2 活跃性问题 1.3.3 性能问题 1.4 线程无处不在 第一部分 基础知识 第2章 线程安全性 2.1 什么是线程安全性 2.2 原子性 2.2.1 竞态条件 2.2.2 示例:延迟初始化中的竞态条件 2.2.3 复合操作

java并发编程实战笔记

1.复合操作 若一个类里有多个属性状态,对每个属性使用atomic类修饰,并且一个属性更新,要在同一原子操作内更新其他所有属性,这样才是线程安全类.需要整体类的状态操作是原子的. 要保持状态的一致性,就需要在单个原子操作中更新所有相关的状态变量. 判断同步代码块的合理大小,要权衡安全性.简单性和性能. 当执行时间较长的计算或可能无法快速完成的操作(如网络IO.控制台IO)一定不要持有锁. 2.对象的共享 1)可见性 为了确保所有线程都能看到共享变量的最新值,所有执行读操作或写操作的线程都必须在同

《Java并发编程实战》第五章 同步容器类 读书笔记

一.同步容器类 1. 同步容器类的问题 线程容器类都是线程安全的.可是当在其上进行符合操作则须要而外加锁保护其安全性. 常见符合操作包括: . 迭代 . 跳转(依据指定顺序找到当前元素的下一个元素) . 条件运算 迭代问题能够查看之前的文章 <Java ConcurrentModificationException 异常分析与解决方式> 二.并发容器 集合类型 非线程安全 线程安全 List ArrayList CopyOnWriteArrayList Set SortedSet Concur