关于动态抽样(Dynamic Sampling)

关于动态抽样(Dynamic Sampling)

原文:http://www.oracle.com/technetwork/issue-archive/2009/09-jan/o19asktom-086775.html

本文将回答:什么是动态抽样?动态抽样有啥作用?以及不同级别的动态抽样的意思?

1、什么是动态采样?

动态抽样从 oracle 9i第2版引入。它使得优化器(CBO)在硬解析期间有能力抽样一个未分析的表

(any table that has been created and loaded but not yet analyzed)的统计(决定表默认统计),并且可以验证优化器的”猜想“。

因其只在查询硬解析期间为优化器动态生成更好的统计,得名动态采样。

动态采样提供11个设置级别。注意:9i中其默认值为1 到了10g默认值为2

2、动态采样如何工作?

有两种使用方式:

△ 设置OPTIMIZER_DYNAMIC_SAMPLING参数,可以再实例和会话级别设置动态采样。

△ 使用DYNAMIC_SAMPLING hint

来看一下不使用动态采样的日子怎么过的

create table t

as

select owner, object_type

from all_objects

/

select count(*) from t;

COUNT(*)

------------------------

68076

code1: 禁用动态采样观察默认基数

set autotrace traceonly explain

SQL> select /*+ dynamic_sampling(t 0) */ * from t;

Execution Plan

------------------------------

Plan hash value: 1601196873

--------------------------------------------------------------------------

| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |

--------------------------------------------------------------------------

|   0 | SELECT STATEMENT  |      | 16010 |   437K|    55   (0)| 00:00:01 |

|   1 |  TABLE ACCESS FULL| T    | 16010 |   437K|    55   (0)| 00:00:01 |

--------------------------------------------------------------------------

--注意0级别即为禁用动态采样,环境默认是开启动态采样的

执行计划显示基数:16010远低于上面查询的68076,明显不靠谱。

code2: 更加接近显示的基数

select * from t;

Execution Plan

------------------------------

Plan hash value: 1601196873

--------------------------------------------------------------------------

| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |

--------------------------------------------------------------------------

|   0 | SELECT STATEMENT  |      | 77871 |  2129K|    56   (2)| 00:00:01 |

|   1 |  TABLE ACCESS FULL| T    | 77871 |  2129K|    56   (2)| 00:00:01 |

--------------------------------------------------------------------------

Note

------------------------------------------

- dynamic sampling used for this statement

code3: 被高估的基数

SQL> delete from t;

68076 rows deleted.

SQL> commit;

Commit complete.

SQL> set autotrace traceonly explain

SQL> select /*+ dynamic_sampling(t 0) */ * from t;

Execution Plan

------------------------------

Plan hash value: 1601196873

--------------------------------------------------------------------------

| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |

--------------------------------------------------------------------------

|   0 | SELECT STATEMENT  |      | 16010 |   437K|    55   (0)| 00:00:01 |

|   1 |  TABLE ACCESS FULL| T    | 16010 |   437K|    55   (0)| 00:00:01 |

--------------------------------------------------------------------------

SQL> select * from t;

Execution Plan

-----------------------------

Plan hash value: 1601196873

--------------------------------------------------------------------------

| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |

--------------------------------------------------------------------------

|   0 | SELECT STATEMENT  |      |     1 |    28 |    55   (0)| 00:00:01 |

|   1 |  TABLE ACCESS FULL| T    |     1 |    28 |    5    (0)| 00:00:01 |

--------------------------------------------------------------------------

Note

---------------------------------------

- dynamic sampling used for this statement

3、动态采样何时帮助优化器验证其猜测?

我们知道当使用DBMS_STATS收集了表信息后,优化器会得到以下统计:

1)表,行数,平均行宽等;

2)单独列,高低值,唯一值数量,直方图(可能)等;

3)单独索引,聚集因素,叶子块数量,索引高度等。

但注意这里面缺少了某些关键统计信息,例如表中不同列数据之间的关联!

假设你你有一个全球人口普查表!

一个属性是:出生月份MONTH_BORN_IN,另一个属性是:所属星座ZODIAC_SIGN。收集信息后,你问优化器出生在11月份的人数?

假设12个月人数正常分布,那么优化器很快给出答案是全量数据的1/12!再问一个:星座是双鱼座的人数呢?答案也是1/12!

迄今为止优化器对答如流!!!nice work!

但是第3个问题来了:出生在11月份并且星座是双鱼座的人数是多少呢?

明眼人转下脑子就知道答案是0(双鱼座2月19日-3月20日)!但是我们看优化器的答案:1/12/12!!! 多么异想天开的答案,思维定式!这样就会诞生差的执行计划,

也正是在此时我们的动态采样开始干预:

code4: 创建模拟数据

SQL > create table t

as select decode( mod(rownum,2), 0, ‘N‘, ‘Y‘ ) flag1,

decode( mod(rownum,2), 0, ‘Y‘, ‘N‘ ) flag2, a.*

from all_objects a

/

Table created.

SQL > create index t_idx on t(flag1,flag2);

Index created.

SQL > begin

dbms_stats.gather_table_stats

( user, ‘T‘,

method_opt=>‘for all indexed columns size 254‘ );

end;

/

PL/SQL procedure successfully completed.

SQL> select num_rows, num_rows/2,

num_rows/2/2 from user_tables

where table_name = ‘T‘;

NUM_ROWS  NUM_ROWS/2  NUM_ROWS/2/2

--------  ----------  ------------

68076       34038         17019

code5:验证一下上面的说法:

SQL> set autotrace traceonly explain

SQL> select * from t where flag1=‘N‘;

Execution Plan

------------------------------

Plan hash value: 1601196873

--------------------------------------------------------------------------

| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |

--------------------------------------------------------------------------

|   0 | SELECT STATEMENT  |      | 33479 |  3432K|   292   (1)| 00:00:04 |

|*  1 |  TABLE ACCESS FULL| T    | 33479 |  3432K|   292   (1)| 00:00:04 |

--------------------------------------------------------------------------

Predicate Information (identified by operation id):

---------------------------------------------------

1 - filter("FLAG1"=‘N‘)

SQL> select * from t where flag2=‘N‘;

Execution Plan

----------------------------

Plan hash value: 1601196873

---------------------------------------------------------------------------

| Id  | Operation         | Name | Rows  | Bytes  | Cost (%CPU)| Time     |

---------------------------------------------------------------------------

|   0 | SELECT STATEMENT  |      | 34597 |   3547K|   292   (1)| 00:00:04 |

|*  1 |  TABLE ACCESS FULL| T    | 34597 |   3547K|   292   (1)| 00:00:04 |

---------------------------------------------------------------------------

Predicate Information (identified by operation id):

---------------------------------------------------

1 - filter("FLAG2"=‘N‘)

--至此一切正常!so far, so good!

code5: here comes the problem

SQL> select * from t where flag1 = ‘N‘ and flag2 = ‘N‘;

Execution Plan

----------------------------

Plan hash value: 1601196873

--------------------------------------------------------------------------

| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |

--------------------------------------------------------------------------

|   0 | SELECT STATEMENT  |      | 17014 |  1744K|   292   (1)| 00:00:04 |

|*  1 |  TABLE ACCESS FULL| T    | 17014 |  1744K|   292   (1)| 00:00:04 |

--------------------------------------------------------------------------

Predicate Information (identified by operation id):

----------------------------------------------------

1 - filter("FLAG1" = ‘N‘ AND "FLAG2" = ‘N‘)

--验证了我们前面说的优化器此时异想天开了

code7: 动态采样听令,开始介入

SQL> select /*+ dynamic_sampling(t 3) */ * from t where flag1 = ‘N‘ and flag2 = ‘N‘;

Execution Plan

-----------------------------

Plan hash value: 470836197

------------------------------------------------------------------------------------

| Id  | Operation                   | Name  | Rows | Bytes | Cost (%CPU)| Time     |

------------------------------------------------------------------------------------

|   0 | SELECT STATEMENT            |       |    6 |   630 |     2   (0)| 00:00:01 |

|   1 |  TABLE ACCESS BY INDEX ROWID| T     |    6 |   630 |     2   (0)| 00:00:01 |

|*  2 |   INDEX RANGE SCAN          | T_IDX |    6 |       |     1   (0)| 00:00:01 |

------------------------------------------------------------------------------------

Predicate Information (identified by operation id):

----------------------------------------------------

2 - access("FLAG1"=‘N‘ AND "FLAG2"=‘N‘)

code8: 我们打开SQL_TRACE会看到以下语句:

SELECT /* OPT_DYN_SAMP */ /*+ ALL_ROWS IGNORE_WHERE_CLAUSE

NO_PARALLEL(SAMPLESUB) opt_param(‘parallel_execution_enabled‘, ‘false‘)

NO_PARALLEL_INDEX(SAMPLESUB) NO_SQL_TUNE */ NVL(SUM(C1),:"SYS_B_00"),

NVL(SUM(C2),:"SYS_B_01"), NVL(SUM(C3),:"SYS_B_02")

FROM

(SELECT /*+ IGNORE_WHERE_CLAUSE NO_PARALLEL("T") FULL("T")

NO_PARALLEL_INDEX("T") */ :"SYS_B_03" AS C1, CASE WHEN "T"."FLAG1"=

:"SYS_B_04" AND "T"."FLAG2"=:"SYS_B_05" THEN :"SYS_B_06" ELSE :"SYS_B_07"

END AS C2, CASE WHEN "T"."FLAG2"=:"SYS_B_08" AND "T"."FLAG1"=:"SYS_B_09"

THEN :"SYS_B_10" ELSE :"SYS_B_11" END AS C3 FROM "T" SAMPLE BLOCK

(:"SYS_B_12" , :"SYS_B_13") SEED (:"SYS_B_14") "T") SAMPLESUB

可以看出来优化器在验证其猜想。。。

4、动态采样级别:

现在列出11个级别,详细请参考:http://docs.oracle.com/cd/B19306_01/server.102/b14211/stats.htm#i43032

1)Level 0: Do not use dynamic sampling.

0级:不使用动态采样。

2)Level 1: Sample all tables that have not been analyzed if the following criteria are met: (1) there is at least 1 unanalyzed table in the query; (2) this unanalyzed table is joined to another table or appears in a subquery or non-mergeable view; (3) this
unanalyzed table has no indexes; (4) this unanalyzed table has more blocks than the number of blocks that would be used for dynamic sampling of this table. The number of blocks sampled is the default number of dynamic sampling blocks (32).

1级:满足以下条件则采样所有没被分析的表:

(1)查询中至少有一个未分析表;

(2)这个未分析表被关联另外一个表或者出现在子查询或非merge视图中;

(3)这个未分析表有索引;

(4)这个未分析表有多余动态采样默认的数据块数(默认是32块)。

3)Level 2: Apply dynamic sampling to all unanalyzed tables. The number of blocks sampled is two times the default number of dynamic sampling blocks.

2级:对所有未分析表进行动态采样。采样数据块数量是默认数量的2倍。

4)Level 3: Apply dynamic sampling to all tables that meet Level 2 criteria, plus all tables for which standard selectivity estimation used a guess for some predicate that is a potential dynamic sampling predicate. The number of blocks sampled is the default
number of dynamic sampling blocks. For unanalyzed tables, the number of blocks sampled is two times the default number of dynamic sampling blocks.

3级:在2级基础上加上那些使用了猜想选择消除表,采样数据块数量等于默认数量。对于未分析表,采样数量2倍于默认数量。

5)Level 4: Apply dynamic sampling to all tables that meet Level 3 criteria, plus all tables that have single-table predicates that reference 2 or more columns. The number of blocks sampled is the default number of dynamic sampling blocks. For unanalyzed tables,
the number of blocks sampled is two times the default number of dynamic sampling blocks.

4级:在3级基础上加上那些有单表谓词关联2个或多个列,采样数据块数量等于默认数量。对于未分析表,采样数量2倍于默认数量。

6)Levels 5, 6, 7, 8, and 9: Apply dynamic sampling to all tables that meet the previous level criteria using 2, 4, 8, 32, or 128 times the default number of dynamic sampling blocks respectively.

5,6,7,8,9级在4级基础上分别使用2,4,8,32,128倍于默认动态采样数据块数量。

7)Level 10: Apply dynamic sampling to all tables that meet the Level 9 criteria using all blocks in the table.

10级:在9级基础上对表中所有数据块进行采样。

5、什么时候适合采用动态采样?

这是一个狡猾的问题,没有一定使用经验,还真不好意思说。

通常:

1)我们使用3和4级进行动态采样。

2)如果我们SQL的解析时间很快但是执行时间巨慢,可以考虑使用动态采样。典型的就是数据仓库系统。

3)OLTP系统中都是一个SQL重复执行,解析和执行都在瞬息之间,所以不建议使用高级别的动态采样。这会给SQL带来硬解析消耗。

这个时候可以考虑SQL Profile,你可以理解为“静态采样”。

关于SQL Profiles参考:http://docs.oracle.com/cd/B28359_01/server.111/b28274/sql_tune.htm#PFGRF02605

-------------------------------------

Dylan    Presents.

时间: 2024-12-16 08:43:32

关于动态抽样(Dynamic Sampling)的相关文章

使用动态类型dynamic让你的省了很多临时类

客户端与服务端的数据交互使用的数据格式是json格式,为了使客户端与服务端有类对应关系,进行序列化,所以总要定义一些类,使用动态类型dynamic可以不必要定义那么多类. 测试代码: 1 using System; 2 using System.Collections.Generic; 3 using System.Linq; 4 using System.Web; 5 using System.Web.Mvc; 6 7 namespace dynamic.Controllers 8 { 9 /

蓄水池抽样Reservior Sampling

编程珠玑第12章练习题10: 如何从n个对象(可以依次看到这n个对象,但事先不知道n的值)中随机选择一个?具体说来,如何在事先不知道文本文件行数的情况下读取文件,从中随机选择并输出一行? 解答:我们总选择 第1行,并以概率1/2选择第2行,以概率1/3选择第3行,依次类推,在这一过程结束时,每一行选中的概率是相等的(都是1/n,其中n是文件的总行数) i = 0; while more input lines with probability 1.0/++i choice = this inpu

C#笔记---动态类(Dynamic)应用

背景: 在Coding中有时候会遇到一些需要解析的数据,可是数据的字段数量和名称未统一,我们没法定义实体类来对应.那么我们就会想到通过C#的dynamic动态类来实现,如果大家注意的话一些ORM框架里面貌似都有用到dynamic来实现一部分功能.  一.Dynamic的基本应用 1.1 通过.PropertyName来添加属性,和JavaScript的对象差不多.不过对于我们所要解析的数据,我们事先也许根本不知道属性名称,所以用这种方法意义不大. dynamic myObj = new Expa

Linux - 动态(Dynamic)与静态(Static)函数库

首先我们要知道的是,函式库的类型有哪些?依据函式库被使用的类型而分为两大类,分别是静态 (Static) 与动态 (Dynamic) 函式库两类. 静态函式库的特色: 扩展名:(扩展名为 .a) 这类的函式库通常扩展名为 libxxx.a 的类型: 编译行为: 这类函式库在编译的时候会直接整合到运行程序当中,所以利用静态函式库编译成的文件会比较大一些喔: 独立运行的状态: 这类函式库最大的优点,就是编译成功的可运行档可以独立运行,而不需要再向外部要求读取函式库的内容 (请参照动态函式库的说明).

Bootstrap Validator使用特性,动态(Dynamic)添加的input的验证问题

http://1000hz.github.io/bootstrap-validator/#validator-usage Validated fields By default, the validator will only validate fields that are present when the plugin is initialized. If your form has a dynamic set of fields, you will need to call $(...).

Elasticsearch - 自动检测及动态映射Dynamic Mapping

一.自动映射: ES通过查看定义某文档的json格式就能猜测到文档结构,我们称之为自动映射,在开发过程中需要注意这些特性. 字段自动检测 在某个字段第一次出现时,如果之前没有定义过映射,ES会自动检测它可能满足的类型,然后创建对应的映射. JSON数据 ES中的数据类型 null 不会添加字段 true or false boolean floating point number double integer long object object array 依赖于第一个非null得值 stri

【unity】动态图集 dynamic atlas (runtime atlas)

https://blog.csdn.net/nxshow/article/details/90724350?depth_1-utm_source=distribute.pc_relevant.none-task&utm_source=distribute.pc_relevant.none-task 不管NGUI还是UGUI,图集都是在制作期间就生成了的,运行时是一张大图,这样做的好处在于我们可以在一定程度上去合并批次,但是图集通常在制作过程中,会分成commonatlas和系统atlas两类,一

C++数据结构Data Structures动态数组Dynamic Tetris Arrays程序代写(待解决)

CSCI-1200 Data Structures | Spring 2015Homework 3 | Dynamic Tetris ArraysIn this assignment you will use dynamically-allocated arrays to keep track of blocks on the 2D grid of theclassic Tetris computer game. Follow these links to read about the hist

c#动态类型Dynamic

需引用System.Dynamic命名空间 来源:http://www.cnblogs.com/ryanding/archive/2010/12/09/1900106.html dynamic Customer = new ExpandoObject(); Customer.Name = "Lucy"; Customer.Age = 20; Customer.Female = true; Console.WriteLine(Customer.Name + Customer.Age +