typedef的那点事【转】

typedef 声明,简称 typedef,为现有类型创建一个新的名字。比如人们常常使用 typedef 来编写更美观和可读的代码。所谓美观,意指 typedef 能隐藏笨拙的语法构造以及平台相关的数据类型,从而增强可移植性和以及未来的可维护性。本文下面将竭尽全力来揭示 typedef 强大功能以及如何避免一些常见的陷阱。

1. 定义易于记忆的类型名

typedef 使用最多的地方是创建易于记忆的类型名,用它来归档程序员的意图。类型出现在所声明的变量名字中,位于 ‘‘typedef‘‘ 关键字右边。例如:

typedef int size;

此声明定义了一个 int 的同义字,名字为 size。注意 typedef 并不创建新的类型。它仅仅为现有类型添加一个同义字。你可以在任何需要 int 的上下文中使用 size:

void measure(size * psz);

size array[4];

size len = file.getlength();

std::vector <size> vs;

typedef 还可以掩饰符合类型,如指针和数组。例如,你不用象下面这样重复定义有 81 个字符元素的数组:

char line[81];

char text[81];

定义一个 typedef,每当要用到相同类型和大小的数组时,可以这样:

typedef char Line[81];

Line text, secondline;

getline(text);

同样,可以象下面这样隐藏指针语法:

typedef char * pstr;

int mystrcmp(pstr, pstr);

这里将带我们到达第一个 typedef 陷阱。标准函数 strcmp()有两个‘const char *‘类型的参数。因此,它可能会误导人们象下面这样声明 mystrcmp():

int mystrcmp(const pstr, const pstr);

这是错误的,按照顺序,‘const pstr‘被解释为‘char * const‘(一个指向 char 的常量指针),而不是‘const char *‘(指向常量 char 的指针)。这个问题很容易解决:

typedef const char * cpstr;

int mystrcmp(cpstr, cpstr); // 现在是正确的

记住:不管什么时候,只要为指针声明 typedef,那么都要在最终的 typedef 名称中加一个 const,以使得该指针本身是常量,而不是对象。

2. 代码简化

上面讨论的 typedef 行为有点像 #define 宏,用其实际类型替代同义字。不同点是 typedef 在编译时被解释,因此让编译器来应付超越预处理器能力的文本替换。例如:

typedef int (*PF) (const char *, const char *);

这个声明引入了 PF 类型作为函数指针的同义字,该函数有两个 const char * 类型的参数以及一个 int 类型的返回值。如果要使用下列形式的函数声明,那么上述这个 typedef 是不可或缺的:

PF Register(PF pf);

Register() 的参数是一个 PF 类型的回调函数,返回某个函数的地址,其署名与先前注册的名字相同。做一次深呼吸。下面我展示一下如果不用typedef,我们是如何实现这个声明的:

int (*Register (int (*pf)(const char *, const char *)))

(const char *, const char *);

很少有程序员理解它是什么意思,更不用说这种费解的代码所带来的出错风险了。显然,这里使用 typedef 不是一种特权,而是一种必需。持怀疑态度的人可能会问:"OK,有人还会写这样的代码吗?",快速浏览一下揭示 signal()函数的头文件 <csinal>,一个有同样接口的函数。

3. typedef 和存储类关键字(storage class specifier

这种说法是不是有点令人惊讶,typedef 就像 auto,extern,mutable,static,和 register 一样,是一个存储类关键字。这并是说 typedef 会真正影响对象的存储特性;它只是说在语句构成上,typedef 声明看起来象 static,extern 等类型的变量声明。下面将带到第二个陷阱:

typedef register int FAST_COUNTER; // 错误

编译通不过。问题出在你不能在声明中有多个存储类关键字。因为符号 typedef 已经占据了存储类关键字的位置,在 typedef 声明中不能用register(或任何其它存储类关键字)。

4. 促进跨平台开发

typedef 有另外一个重要的用途,那就是定义机器无关的类型,例如,你可以定义一个叫 REAL 的浮点类型,在目标机器上它可以i获得最高的精度:

typedef long double REAL;

在不支持 long double 的机器上,该 typedef 看起来会是下面这样:

typedef double REAL;

并且,在连 double 都不支持的机器上,该 typedef 看起来会是这样: 、

typedef float REAL;

你不用对源代码做任何修改,便可以在每一种平台上编译这个使用 REAL 类型的应用程序。唯一要改的是 typedef 本身。在大多数情况下,甚至这个微小的变动完全都可以通过奇妙的条件编译来自动实现。不是吗? 标准库广泛地使用 typedef 来创建这样的平台无关类型:size_t,ptrdiff 和 fpos_t 就是其中的例子。此外,象 std::string 和 std::ofstream 这样的 typedef 还隐藏了长长的,难以理解的模板特化语法,例如:basic_string<char, char_traits<char>,allocator<char>> 和 basic_ofstream<char, char_traits<char>>。

5. typedef & 结构的问题

当用下面的代码定义一个结构时,编译器报了一个错误,为什么呢?莫非C语言不允许在结构中包含指向它自己的指针吗?请你先猜想一下,然后看下文说明:


typedef struct tagNode
{
 char *pItem;
 pNode pNext;
} *pNode;

答案与分析

1)typedef的最简单使用


typedef long byte_4;

给已知数据类型long起个新名字,叫byte_4。

2)typedef与结构结合使用


typedef struct tagMyStruct

 int iNum;
 long lLength;
} MyStruct;

这语句实际上完成两个操作:

1) 定义一个新的结构类型


struct tagMyStruct

 int iNum; 
 long lLength; 
};

分析:tagMyStruct称为“tag”,即“标签”,实际上是一个临时名字,struct 关键字和tagMyStruct一起,构成了这个结构类型,不论是否有typedef,这个结构都存在。

我们可以用struct tagMyStruct varName来定义变量,但要注意,使用tagMyStruct varName来定义变量是不对的,因为struct tagMyStruct合在一起才能表示一个结构类型。

2) typedef为这个新的结构起了一个名字,叫MyStruct。


typedef struct tagMyStruct MyStruct;

因此,MyStruct实际上相当于struct tagMyStruct,我们可以使用MyStruct varName来定义变量。

答案与分析

C语言当然允许在结构中包含指向它自己的指针,我们可以在建立链表等数据结构的实现上看到无数这样的例子,上述代码的根本问题在于typedef的应用。

根据我们上面的阐述可以知道:新结构建立的过程中遇到了pNext域的声明,类型是pNode,要知道pNode表示的是类型的新名字,那么在类型本身还没有建立完成的时候,这个类型的新名字也还不存在,也就是说这个时候编译器根本不认识pNode。

解决这个问题的方法有多种:


typedef struct tagNode 
{
 char *pItem;
 struct tagNode *pNext;
} *pNode;


typedef struct tagNode *pNode;
struct tagNode 
{
 char *pItem;
 pNode pNext;
};

注意:在这个例子中,你用typedef给一个还未完全声明的类型起新名字。C语言编译器支持这种做法。

3)、规范做法: 


struct tagNode
{
 char *pItem;
 struct tagNode *pNext;
};
typedef struct tagNode *pNode;

6. typedef & #define的问题

有下面两种定义pStr数据类型的方法,两者有什么不同?哪一种更好一点?


typedef char *pStr;
#define pStr char *;

答案与分析

通常讲,typedef要比#define要好,特别是在有指针的场合。请看例子:


typedef char *pStr1;
#define pStr2 char *;
pStr1 s1, s2;
pStr2 s3, s4;

在上述的变量定义中,s1、s2、s3都被定义为char *,而s4则定义成了char,不是我们所预期的指针变量,根本原因就在于#define只是简单的字符串替换而typedef则是为一个类型起新名字。

#define用法例子:


#define f(x) x*x
main( )
{
 int a=6,b=2,c;
 c=f(a) / f(b);
 printf("%d \\n",c);
}

以下程序的输出结果是: 36。

因为如此原因,在许多C语言编程规范中提到使用#define定义时,如果定义中包含表达式,必须使用括号,则上述定义应该如下定义才对:


#define f(x) (x*x)

当然,如果你使用typedef就没有这样的问题。

7. typedef & #define的另一例

下面的代码中编译器会报一个错误,你知道是哪个语句错了吗?


typedef char * pStr;
char string[4] = "abc";
const char *p1 = string;
const pStr p2 = string;
p1++;
p2++;

答案与分析

是p2++出错了。这个问题再一次提醒我们:typedef和#define不同,它不是简单的文本替换。上述代码中const pStr p2并不等于const char * p2const pStr p2和const long x本质上没有区别,都是对变量进行只读限制,只不过此处变量p2的数据类型是我们自己定义的而不是系统固有类型而已。因此,const pStr p2的含义是:限定数据类型为char *的变量p2为只读,因此p2++错误。

时间: 2024-10-13 00:37:12

typedef的那点事【转】的相关文章

typedef函数指针那些事

首先来介绍下函数指针: 函数指针是指向函数的指针变量,即本质是一个指针变量. int (*f) (int x); /* 声明一个函数指针 */ f=func; /* 将func函数的首地址赋给指针f */ 使用的时候可以直接通过(*f)(x)这样的形式.网上有很多的函数指针资料,就不多说了. 当我们在函数指针前加上typedef,就变成什么样了呢? 比如typedef  INT32  (*WNDPROC)(HWND, INT32, WPARAM, LPARAM); 这条语句的意思是定义了一个类型

typedef可以成为你的朋友

typedef为一种类型引入新的名字,而不是为变量分配空间,它并没有引入新的类型,而是为现有的类型取个新名字.在说到typedef时,有一个很好的例子是signal()函数声明,但是,一般而言只有极少数情况才会使用到这样的技巧,这里就不再赘述,我们应该知道更多关于typedef对于大多数程序员应该知道的事. 说到typedef就不能不说一下它的缺点.它同样具有与其他声明一样的混乱语法.可以把几个声明器塞到一个声明中去,例如: typedef int *ptr,(*fun)(void),arr[5

由typedef和函数指针引起的危机

由typedef和函数指针引起的危机 昨天阅读了大神强哥的代码,发现里面用到了函数指针,也用到的typedef.本来我自以为对这两个概念有一定的认识,但是突然发现这两个东西居然用到了一起!!!!(在一起了也不说一声,一点心理准备都没有): typedef int (* fp)(void *para, void *end); 瞬间就蒙了,这是个啥东西???于是我开始看书,上网查资料,想弄明白.在这个过程中,我发现自己不仅仅是对这两个概念理解不够!!!而是,对数组.指针.变量的理解都不够.这引发了我

第7章 c++世界的奇人异事

第7章 c++世界的奇人异事 7.1 一切指针都是纸老虎:彻底理解指针 7.1.1 指针的运算 7.1.2 灵活的void类型和void类型指针 7.1.3 指向指针的指针 7.1.4 指针在函数中的应用 7.1.5 引用 7.2 程序中的异常处理 7.2.1 异常处理 7.2.2 异常的函数接口声明 7.2.3 合理使用异常处理 7.3 编写更复杂的c++程序 7.3.1 源文件和头文件 7.3.2 名字空间 7.3.3 作用域与可见性 7.3.4 编译预处理 7.4 高手是这样炼成的 7.4

C++的那些事:函数全解析

一.函数的结构 函数在C++中可能出现在三种地方,一是函数的定义,它包括了如上图的结构:二是函数的声明,它与函数的定义相比,没有了函数体部分:三则是函数的调用.当然,不同的函数定义可以还会稍有不同,比如类的成员函数.内联函数等.这里我们主要讨论函数的调用时需要注意的一些问题. 二.参数传递 我们将函数定义或声明里的参数叫形参,而在调用函数时传入的参数叫实参.那么根据形参类型的不同,有几下形式的参数传递. 1,非引用形参 1)普通的内置类型 普通非引用类型的参数通过复制对应的实参实现形参的初始化.

函数指针的typedef

1.定义函数的指针类型: 就像自定义数据类型一样,我们也可以先定义一个函数指针类型,然后再用这个类型来申明函数指针变量. 一个自定义数据类型的例子. typedef int* PINT; //为int* 类型定义了一个PINT的别名 int main() { int x; PINT px=&x; //与int * px=&x;是等价的.PINT类型其实就是int * 类型 *px=10; //px就是int*类型的变量 return 0; } 看一下函数指针类型的定义及使用: void M

COGS 1224. [SHOI2002]百事世界杯之旅(期望概率)

COGS 1224. [SHOI2002]百事世界杯之旅 ★   输入文件:pepsi.in   输出文件:pepsi.out   简单对比 时间限制:1 s   内存限制:128 MB [问题描述] “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯.还不赶快行动!” 你关上电视,心想:假设有n个不同的球星名字,每个名字出现的概率相同,平均需要买几瓶饮料才能凑齐所

结构体指针之间和结构体之间的强制类型转换那些事

结构体指针的强制类型转换在链表的使用中是非常有用的一种方式: (比如我们有一条链表(我们知道每一个链表的节点都是一种结构体),而链表中的每一个节点又是某一个结构体中的成员, 我们就可以通过查询链表的节点,通过将节点强制转换为某个结构体,然后我们就可以方便的使用某个结构体的其他成员了). 那么结构体之间的强制转换又是基于什么的原理实现的呢?需要明白下面几点: 1.结构体声明如何内存的分布,  2.结构体指针声明结构体的首地址,  3.结构体成员声明该成员在结构体中的偏移地址 举个例子: typed

C语言--enum,typedef enum 枚举类型详解

原文:http://z515256164.blog.163.com/blog/static/32443029201192182854300/ 有改动 C语言详解 - 枚举类型 注:以下全部代码的执行环境为VC++ 6.0 在程序中,可能需要为某些整数定义一个别名,我们可以利用预处理指令#define来完成这项工作,您的代码可能是: #define MON 1 #define TUE 2 #define WED 3 #define THU 4 #define FRI 5 #define SAT 6