Restoring Road Network(Floyd算法的推广)

个人心得:看懂题目花费了不少时间,后面实现确实时间有点仓促了,只是简单的做出了判断是否为真假的情况,

后面看了题解发现其实在判断时候其实能够一起解决的,算了,基础比较差还是慢慢的来吧。

题意概述:

就是给定一个N阶方阵,规定Auv,为u到v的最短路径,若给出的数据存在其他通路少于此时的值则不存在即为假,

解决方法就是利用Floyd算法进行单源最短路的判断,只要后面的矩阵与原来的不相符就是假的。真的的时候,是要求

存在的最短总路程使得矩阵的数成立,我画了下就是只要存在从其他城市能够转到目的地的时候就可以不要这条直接到达的

路,当时脑袋短路没有弄出来,后面一想只要对于每条路进行判断,若存在这样的路就不加在sum里面就好了

Problem Statement

In Takahashi Kingdom, which once existed, there are N cities, and some pairs of cities are connected bidirectionally by roads. The following are known about the road network:

  • People traveled between cities only through roads. It was possible to reach any city from any other city, via intermediate cities if necessary.
  • Different roads may have had different lengths, but all the lengths were positive integers.

Snuke the archeologist found a table with N rows and N columns, A, in the ruin of Takahashi Kingdom. He thought that it represented the shortest distances between the cities along the roads in the kingdom.

Determine whether there exists a road network such that for each u and v, the integer Au,v at the u-th row and v-th column of A is equal to the length of the shortest path from City u to City v. If such a network exist, find the shortest possible total length of the roads.

Constraints

  • 1≤N≤300
  • If ij, 1≤Ai,j=Aj,i≤109.
  • Ai,i=0

Inputs

Input is given from Standard Input in the following format:

N
A1,1 A1,2  A1,N
A2,1 A2,2  A2,N

AN,1 AN,2  AN,N

Outputs

If there exists no network that satisfies the condition, print -1. If it exists, print the shortest possible total length of the roads.


Sample Input 1

Copy

3
0 1 3
1 0 2
3 2 0

Sample Output 1

Copy

3

The network below satisfies the condition:

  • City 1 and City 2 is connected by a road of length 1.
  • City 2 and City 3 is connected by a road of length 2.
  • City 3 and City 1 is not connected by a road.

Sample Input 2

Copy

3
0 1 3
1 0 1
3 1 0

Sample Output 2

Copy

-1

As there is a path of length 1 from City 1 to City 2 and City 2 to City 3, there is a path of length 2 from City 1 to City 3. However, according to the table, the shortest distance between City 1 and City 3 must be 3.

Thus, we conclude that there exists no network that satisfies the condition.


Sample Input 3

Copy

5
0 21 18 11 28
21 0 13 10 26
18 13 0 23 13
11 10 23 0 17
28 26 13 17 0

Sample Output 3

Copy

82

Sample Input 4

Copy

3
0 1000000000 1000000000
1000000000 0 1000000000
1000000000 1000000000 0

Sample Output 4

Copy

3000000000
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cmath>
 4 #include<cstring>
 5 #include<iomanip>
 6 #include<algorithm>
 7 using namespace std;
 8 #define inf 1<<29
 9 int t,n;
10 long long  dis[305][305];
11 long long  d[305][305];
12 void init()
13 {
14     for(int i=1;i<=n;i++)
15         for(int j=1;j<=n;j++)
16        dis[i][j]=d[i][j];
17 }
18 bool panduan()
19 {
20       for(int i=1;i<=n;i++)
21         for(int j=1;j<=n;j++)
22        if(dis[i][j]!=d[i][j]) return false;
23        return true;
24 }
25 long long  sum()
26 {
27     long long  s=0,fond;
28     for(int i=1;i<=n;i++)
29         for(int j=i+1;j<=n;j++)
30         {
31             fond=1;
32             for(int k=1;k<=n;k++){
33                     if(k==i||k==j) continue;
34             if(dis[i][j]==dis[i][k]+dis[k][j])
35                  fond=0;
36             }
37             if(fond) s+=dis[i][j];
38         }
39
40     return s;
41 }
42 int main()
43 {
44         cin>>n;
45      for(int i=1;i<=n;i++)
46             for(int j=1;j<=n;j++)
47             cin>>d[i][j];
48         init();
49         for(int k=1;k<=n;k++)
50              for(int i=1;i<=n;i++)
51               for(int j=1;j<=n;j++)
52                 if(d[i][j]>d[i][k]+d[k][j])
53                  d[i][j]=d[i][k]+d[k][j];
54         int t=panduan();
55         if(!t) cout<<"-1"<<endl;
56       else cout<<sum()<<endl;
57             return 0;
58 }
				
时间: 2024-12-14 05:03:14

Restoring Road Network(Floyd算法的推广)的相关文章

Restoring Road Network

D - Restoring Road Network Time limit : 2sec / Memory limit : 256MB Score : 500 points Problem Statement In Takahashi Kingdom, which once existed, there are N cities, and some pairs of cities are connected bidirectionally by roads. The following are

AtCoder Regular Contest 083 D:Restoring Road Network

In Takahashi Kingdom, which once existed, there are N cities, and some pairs of cities are connected bidirectionally by roads. The following are known about the road network: People traveled between cities only through roads. It was possible to reach

zoj1967 poj2570 Fiber Network (floyd算法)

虽然不是最短路,但是询问时任意两点之间的信息都要知道才能回答,由此联想到floyd算法,只要都floyd算法的原理理解清楚了就会发现:这道题的思想和求任意两点之间的最短路的一样的,只不过是更新的信息不同而已. 这道题还有一个难点在于状态压缩:如果直接用字符串来表示maps[i][j],那么在floyd中还需要再加一层循环来找maps[i][k]和maps[k][j]有哪些一样的字母,这样时间复杂度太高,实际测试表明会TLE.那么可以用状态压缩的技巧,用二进制表示集合,最多就26位(代表26个字母

AtCoder Beginner Contest 074 D - Restoring Road Network(Floyd变形)

题目链接:点我点我 题意:给出一个最短路的图,询问是否正确,如果正确的话,输出遍历所有点的最短路径和. 题解:判断是否正确的,直接再一次Floyd,判断是否会有A[i][k]+A[k][j]<A[i][j](通过中间点k使得两点间距离更短),如果有的话,直接输出-1. 要遍历到所有道路,并且路径和最小,我们可以尽可能用用中间点的路径(A[i][k]+A[k][j]==A[i][j]),这样本来遍历两个点,就可以遍历3个点了, 最后加的时候记得不要从重复加,从最小点往后加,不要再往前加,不然就重复

【Atcoder】ARC083 D - Restoring Road Network

[算法]图论,最短路? [题意]原图为无向连通图,现给定原图的最短路矩阵,求原图最小边权和,n<=300. [题解]要求最小边权和下,原图的所有边一定是所连两端点的最短路. 那么现在将所有最短路作为边加入原图,考虑删边. 对于(u,v),若存在点w使得(u,v)=(u,w)+(w,v),则(u,v)可以删去.(btw,若是>则无解) 复杂度O(n^3). #include<cstdio> #include<cstring> #include<cctype>

[Arc083D/At3535] Restoring Road Network - 最短路,结论

[Arc083D/At3535] 有 \(N\) 个城市,城市与城市之间用长度为整数的无向道路连接. 现有一考古学家找到了一张 \(N×N\) 的表 \(A\) ,这张表代表了这 \(N\) 座城市两两之间的最短路.即表中的第 \(u\) 行第 \(v\)列的值代表了从城市 \(u\)到\(v\)的最短路长度. 问能否根据这张表,求出高桥王国的最小道路长度总和. ---------- 考虑到原图中的边一定就在这个最短路矩阵中,我们只需要保留其中的一些,让它们"表示"出其它就可以了 那么

hdu 1596 find the safest road(dijkstra||floyd)

find the safest road Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 8192    Accepted Submission(s): 2901 Problem Description XX星球有很多城市,每个城市之间有一条或多条飞行通道,但是并不是所有的路都是很安全的,每一条路有一个安全系数s,s是在 0 和 1

“Chaos”的算法之Floyd算法

倘若我们要在计算机上建立一个交通咨询系统则可以采用图的结构来表示实际的交通网络.其实现最基本的功能,求出任意两点间的最短路径, 求最短路径的经典方法有很多种,最常用的便是迪杰斯特拉算法和佛洛依德(Floyd)算法,这篇文章就着重介绍Floyd算法. 求两点之间的最短路径无外乎有两种情况,一种就是从一点直接到另一点,另一种就是从一点经过n个节点后再到另一个节点,比如说要从A到B,则有两种情况就是A直接到B,或者是从A经过N个节点后再到B,所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离

图论(floyd算法):NOI2007 社交网络

[NOI2007] 社交网络 ★★   输入文件:network1.in   输出文件:network1.out   简单对比 时间限制:1 s   内存限制:128 MB [问题描述] 在社交网络(social network)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有n个人,人与人之间有不同程度的关系.我 们将这个关系网络对应到一个n个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表