推荐算法:协同过滤中的 交替最小二乘法

1. 基础回顾

特别详细的总结,参考 http://blog.csdn.net/wangzhiqing3/article/details/7446444

矩阵的奇异值分解 SVD

  • 矩阵与向量相乘的结果与特征值,特征向量有关。
  • 数值小的特征值对矩阵-向量相乘的结果贡献小

1)低秩近似

2)特征降维

2.

时间: 2024-10-18 02:49:34

推荐算法:协同过滤中的 交替最小二乘法的相关文章

推荐算法-协同过滤推荐算法

layout: post title: "推荐算法-协同过滤推荐算法" date: 2020-4-13 9:00:00 categories: [Algorithm] excerpt: "协同过滤推荐算法简介,参考https://zhuanlan.zhihu.com/p/40463528" 协同过滤推荐算法步骤 1.收集用户偏好 推测用户的喜好就要收集用户的信息,用户收藏的类别,评论,下载,转发这些信息可以数字化,作为用户信息二维矩阵的变量. 2.用户数据的减噪和归

探索推荐引擎内部的秘密,第 2 部分: 深入推荐引擎相关算法 - 协同过滤(转)

第 2 部分: 深入推荐引擎相关算法 - 协同过滤 本系列的第一篇为读者概要介绍了推荐引擎,下面几篇文章将深入介绍推荐引擎的相关算法,并帮助读者高效的实现这些算法. 在现今的推荐技术和算法中,最被大家广泛认可和采用的就是基于协同过滤的推荐方法.它以其方法模型简单,数据依赖性低,数据方便采集 , 推荐效果较优等多个优点成为大众眼里的推荐算法“No.1”.本文将带你深入了解协同过滤的秘密,并给出基于 Apache Mahout 的协同过滤算法的高效实现.Apache Mahout 是 ASF 的一个

深入推荐引擎相关算法 - 协同过滤

集体智慧和协同过滤 什么是集体智慧 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web 应用中利用集体智慧构建更加有趣的应用或者得到更好的用户体验.集体智慧是指在大量的人群的行为和数据中收集答案,帮助你对整个人群得到统计意义上的结论,这些结论是我们在单个个体上无法得到的,它往往是某种趋势或者人群中共性的部分. Wikipedia 和 Google 是两个典型的利用集体智慧的 Web 2.0 应用: Wikip

电影推荐之协同过滤

1.基于内容的推荐 对于基于内容的推荐不多赘述,只说下基本的概念,根据用户已经评分且喜欢(评分高)的电影,为用户推荐和他过去喜欢的电影相似的电影,这里的相似就要依据电影的"内容"来计算了,例如电影的类型等等. 利用到评分预测上,就是对于目标用户A和电影M,从A已经评价过的电影中找到与M相似的电影,利用这些电影的评分来预测用户A对M的评分. 2.协同过滤 协同过滤算法主要分为基于用户的协同过滤算法和基于项目的协同过滤算法. 基于用户的协同过滤通俗的来说呢,就是对于待预测的目标用户A及电影

共轭梯度法求解协同过滤中的 ALS

协同过滤是一类基于用户行为数据的推荐方法,主要是利用已有用户群体过去的行为或意见来预测当前用户的偏好,进而为其产生推荐.能用于协同过滤的算法很多,大致可分为:基于最近邻推荐和基于模型的推荐.其中基于最近邻推荐主要是通过计算用户或物品之间的相似度来进行推荐,而基于模型的推荐则通常要用到一些机器学习算法.矩阵分解可能是被研究地最多的基于模型的推荐算法,在著名的 Netflix 大赛中也是大放异彩,核心思想是利用低维隐向量为每个用户和物品建模,进而推测用户对物品的偏好.现在的关键问题是如果要用矩阵分解

推荐系统介绍:(协同过滤)—Intro to Recommender Systems: Collaborative Filtering

本文试验前期准备: MovieLens  ml-100k数据集 Jupyter notebook themoviedb.org API key     添加python引用 import numpy as np import pandas as pd 进入MovieLens  ml-100k数据存放目录 cd F:\Master\MachineLearning\kNN\ml-100k 读取数据:u.data每行数据分为userid,itemid,rating,时间戳四部分 names = ['u

物理学背景下的推荐与协同过滤的理解

物理学背景的推荐算法与协同过滤 随着个性化推荐技术的发展,各种各样的推荐算法也竞相参与到这片新兴应用领域中进行开荒,一时间百花齐放,其中就有一些基于物理学背景的算法参与其中,本文阐述的是这篇文章在推荐算法上的主要内容,及其与传统的协同过滤算法在形式上的对比. 文章原名为<Solving the apparent diversity-accuracy dilemma of recommender systems>,要解决的正是当下推荐系统领域炙手可热的问题:怎样平衡推荐的精确度与多样性.作者的专

协同过滤中的Grey Sheep问题

寒神解释:某些用户的倾向性和品味没有一致性,比较散.因此在协同过滤这种算法里,没办法和某个group有很高的相似/一致度,推荐会失效. 我理解是寻找邻居时候计算得到的相似度和其他用户相似度都非常小,或者说都低于阈值,这样由于没有邻居,那么就不是CF了.

【Spark机器学习速成宝典】推荐引擎——协同过滤

目录 推荐模型的分类 条目2 条目3 条目4 条目5 条目6 条目7 条目8 条目9 推荐模型的分类 最为流行的两种方法是基于内容的过滤.协同过滤. 基于内容的过滤: 比如用户A买了商品A,商品B与商品A相似(这个相似是基于商品内部的属性,比如"非常好的协同过滤入门文章"和"推荐系统:协同过滤collaborative filtering"比较相似),那么就能将商品B推荐给用户. 协同过滤: 利用的是训练数据是大量用户对商品的评分,即(userID,productI