HDU1255_覆盖的面积(扫描线/线段树+离散)

解题报告

题目传送门

题意:

求面积交。

思路:

不会呀。

只知道线段树应该维护覆盖数大于2的线段长度。

不会更新,看了别人写的理解的,太菜了。

用sum1和sum2分别来表示覆盖数为1的区间长度和覆盖数为2的区间长度。

更新时即要更新sum1也要更新sum2;

区间如果被覆盖

sum1为实际区间长度,如果覆盖一次,sum2为左右子树的sum1和,覆盖两次就为实际区间长度。

没有被覆盖就直接等于左右子树的和。

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
struct Seg {
    double lx,rx,h;
    int v;
    friend bool operator < (Seg a,Seg b) {
        return a.h<b.h;
    }
} seg[2010];
double _hash[2010],sum1[100000],sum2[100000];
int lz[100000];
void push_down(int rt,int l,int r) {
    if(lz[rt]) {
        lz[rt<<1]+=lz[rt];
        lz[rt<<1|1]+=lz[rt];
        lz[rt]=0;
    }
}
void push_up(int rt,int l,int r) {
    if(lz[rt]) {
        sum1[rt]=_hash[r+1]-_hash[l];
        if(lz[rt]>=2)
            sum2[rt]=_hash[r+1]-_hash[l];
        else if(lz[rt]==1)
            sum2[rt]=sum1[rt<<1]+sum1[rt<<1|1];
    } else
    sum1[rt]=sum1[rt<<1]+sum1[rt<<1|1],
    sum2[rt]=sum2[rt<<1]+sum2[rt<<1|1];
}

void update(int rt,int l,int r,int ql,int qr,int v) {
    if(ql>r||qr<l)return ;
    if(ql<=l&&r<=qr) {
        lz[rt]+=v;
        push_up(rt,l,r);
        return ;
    }
    int mid=(l+r)>>1;
    update(rt<<1,l,mid,ql,qr,v);
    update(rt<<1|1,mid+1,r,ql,qr,v);
    push_up(rt,l,r);
}
int main() {
    int t,n,i,j,ql,qr;
    double lx,ly,rx,ry;
    scanf("%d",&t);
    while(t--) {
        double ans=0;
        scanf("%d",&n);
        memset(lz,0,sizeof(lz));
        memset(sum1,0,sizeof(sum1));
        memset(sum2,0,sizeof(sum2));
        for(i=0; i<n; i++) {
            scanf("%lf%lf%lf%lf",&lx,&ly,&rx,&ry);
            _hash[i]=lx;
            _hash[i+n]=rx;
            seg[i].lx=lx,seg[i].rx=rx,seg[i].h=ly,seg[i].v=1;
            seg[i+n].lx=lx,seg[i+n].rx=rx,seg[i+n].h=ry,seg[i+n].v=-1;
        }
        sort(_hash,_hash+n*2);
        sort(seg,seg+n*2);
        int m=unique(_hash,_hash+n*2)-_hash;
        for(i=0; i<n*2-1; i++) {
            ql=lower_bound(_hash,_hash+m,seg[i].lx)-_hash;
            qr=lower_bound(_hash,_hash+m,seg[i].rx)-_hash-1;
            if(i)ans+=sum2[1]*(seg[i].h-seg[i-1].h);
            update(1,0,m-1,ql,qr,seg[i].v);
        }
        printf("%.2lf\n",ans+0.000001);
    }
    return 0;
}

覆盖的面积

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 3658    Accepted Submission(s): 1787

Problem Description

给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积.

Input

输入数据的第一行是一个正整数T(1<=T<=100),代表测试数据的数量.每个测试数据的第一行是一个正整数N(1<=N<=1000),代表矩形的数量,然后是N行数据,每一行包含四个浮点数,代表平面上的一个矩形的左上角坐标和右下角坐标,矩形的上下边和X轴平行,左右边和Y轴平行.坐标的范围从0到100000.

注意:本题的输入数据较多,推荐使用scanf读入数据.

Output

对于每组测试数据,请计算出被这些矩形覆盖过至少两次的区域的面积.结果保留两位小数.

Sample Input

2
5
1 1 4 2
1 3 3 7
2 1.5 5 4.5
3.5 1.25 7.5 4
6 3 10 7
3
0 0 1 1
1 0 2 1
2 0 3 1

Sample Output

7.63
0.00

Author

Ignatius.L & weigang Lee

Recommend

Ignatius.L

HDU1255_覆盖的面积(扫描线/线段树+离散)

时间: 2024-10-15 09:48:29

HDU1255_覆盖的面积(扫描线/线段树+离散)的相关文章

hdu1542 Atlantis(扫描线+线段树+离散)矩形相交面积

题目链接:点击打开链接 题目描写叙述:给定一些矩形,求这些矩形的总面积.假设有重叠.仅仅算一次 解题思路:扫描线+线段树+离散(代码从上往下扫描) 代码: #include<cstdio> #include <algorithm> #define MAXN 110 #define LL ((rt<<1)+1) #define RR ((rt<<1)+2) using namespace std; int n; struct segment{ double l

HDU1542_Atlantis(扫描线/线段树+离散)

解题报告 题目传送门 题意: 求矩形并面积. 思路: 离散+线段树+扫描线. #include <algorithm> #include <iostream> #include <cstring> #include <cstdio> using namespace std; struct Seg { int v; double h,lx,rx; friend bool operator < (Seg a,Seg b) { return a.h<b

ZOJ1659_Mobile Phone Coverage(扫描线/线段树+离散)

解题报告 题目传送门 题意: 求矩形面积并 思路: 扫描线+线段树.要离散化,坐标是浮点型的. 对于线段树(区间)与点坐标对应起来可以这样 区间[1,4]对应的线段树. #include <algorithm> #include <iostream> #include <cstring> #include <cstdio> using namespace std; struct Seg { int v; double lx,rx,h; friend bool

POJ训练计划1177_Picture(扫描线/线段树+离散)

解题报告 题意: 求矩形周长和. 思路: 左扫上扫,扫过了. #include <iostream> #include <cstring> #include <cstdio> #include <algorithm> #include <cmath> using namespace std; struct Seg { int lx,rx,ly,ry,h,v; friend bool operator < (Seg a,Seg b) { re

HDU 1255 覆盖的面积(线段树扫描线)

Problem Description 给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积. Input 输入数据的第一行是一个正整数T(1<=T<=100),代表测试数据的数量.每个测试数据的第一行是一个正整数N(1<=N<=1000),代表矩形的数量,然后是N行数据,每一行包含四个浮点数,代表平面上的一个矩形的左上角坐标和右下角坐标,矩形的上下边和X轴平行,左右边和Y轴平行.坐标的范围从0到100000. 注意:本题的输入数据较多,推荐使用scanf读入数据. Out

HDU 1255 覆盖的面积 ——(线段树+扫描线)

又做了一题扫描线以后对节点的覆盖标记理解的更加深刻了. 代码如下: 1 #include <stdio.h> 2 #include <algorithm> 3 #include <string.h> 4 #define t_mid (l+r>>1) 5 #define ls (o<<1) 6 #define rs (o<<1|1) 7 #define lson ls,l,t_mid 8 #define rson rs,t_mid+1,

hdu(1255)——覆盖的面积(线段树求面积交)

给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积. 虽说覆盖两次区域的面积,但是这道题实际上就是求矩形的面积交. 膜拜能够想出这种解法的神牛,竟然能把实际的东西用这么抽象的语言表示出来,实在是佩服,现在关于扫描线的题才做了几道,没有对其深刻理解,但是多练总可以理解的,奋斗吧!!ACMer!!我是永远不会服输的.加油! 下面还是附上题解,写的不够详细清楚还请多多见谅. 首先我想说我是看了别人的博客学了思路,然后按照别人的代码来模仿写的. 这里推荐:http://www.cnblogs.

HUD 1255——覆盖的面积(线段树+面积并多次+离散化)

覆盖的面积 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 3756    Accepted Submission(s): 1846 Problem Description 给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积. Input 输入数据的第一行是一个正整数T(1<=T<=100),代表测试数据的数量.每个测试数

HDU 1255 覆盖的面积(线段树扫描线求面积的交)

Problem Description 给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积. Input 输入数据的第一行是一个正整数T(1<=T<=100),代表测试数据的数量.每个测试数据的第一行是一个正整数N(1<=N<=1000),代表矩形的数量,然后是N行数据,每一行包含四个浮点数,代表平面上的一个矩形的左上角坐标和右下角坐标,矩形的上下边和X轴平行,左右边和Y轴平行.坐标的范围从0到100000. 注意:本题的输入数据较多,推荐使用scanf读入数据. Out