iOS并发编程--8种加锁方式及比较

iOS开发中不可避免的会遇到加锁的情况,今天就来比较一下各种加锁方式。

目前我所知道的有如下几种加锁方式:

1. @synchronized 关键字加锁

2. NSLock 对象锁

3. NSCondition

4. NSConditionLock 条件锁

5. NSRecursiveLock 递归锁

6. pthread_mutex 互斥锁(C语言)

7. dispatch_semaphore 信号量实现加锁(GCD)

8. OSSpinLock

这里分别使用8种方式加锁解锁1千万次,执行方法如下:

#import <pthread.h>
#import <libkern/OSAtomic.h>

- (void)runLock{
     CFTimeInterval timeBefore;
    CFTimeInterval timeCurrent;
    NSUInteger i;
    NSUInteger count = 1000*10000;//执行一千万次

    //@synchronized
    id obj = [[NSObject alloc]init];;
    timeBefore = CFAbsoluteTimeGetCurrent();
    for(i=0; i<count; i++){
        @synchronized(obj){
        }
    }
    timeCurrent = CFAbsoluteTimeGetCurrent();
    printf("@synchronized used : %f\n", timeCurrent-timeBefore);

    //NSLock
    NSLock *lock = [[NSLock alloc]init];
    timeBefore = CFAbsoluteTimeGetCurrent();
    for(i=0; i<count; i++){
        [lock lock];
        [lock unlock];
    }
    timeCurrent = CFAbsoluteTimeGetCurrent();
    printf("NSLock used : %f\n", timeCurrent-timeBefore);

    //NSCondition
    NSCondition *condition = [[NSCondition alloc]init];
    timeBefore = CFAbsoluteTimeGetCurrent();
    for(i=0; i<count; i++){
        [condition lock];
        [condition unlock];
    }
    timeCurrent = CFAbsoluteTimeGetCurrent();
    printf("NSCondition used : %f\n", timeCurrent-timeBefore);

    //NSConditionLock
    NSConditionLock *conditionLock = [[NSConditionLock alloc]init];
    timeBefore = CFAbsoluteTimeGetCurrent();
    for(i=0; i<count; i++){
        [conditionLock lock];
        [conditionLock unlock];
    }
    timeCurrent = CFAbsoluteTimeGetCurrent();
    printf("NSConditionLock used : %f\n", timeCurrent-timeBefore);

    //NSRecursiveLock
    NSRecursiveLock *recursiveLock = [[NSRecursiveLock alloc]init];
    timeBefore = CFAbsoluteTimeGetCurrent();
    for(i=0; i<count; i++){
        [recursiveLock lock];
        [recursiveLock unlock];
    }
    timeCurrent = CFAbsoluteTimeGetCurrent();
    printf("NSRecursiveLock used : %f\n", timeCurrent-timeBefore);

    //pthread_mutex
    pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
    timeBefore = CFAbsoluteTimeGetCurrent();
    for(i=0; i<count; i++){
        pthread_mutex_lock(&mutex);
        pthread_mutex_unlock(&mutex);
    }
    timeCurrent = CFAbsoluteTimeGetCurrent();
    printf("pthread_mutex used : %f\n", timeCurrent-timeBefore);

    //dispatch_semaphore
    dispatch_semaphore_t semaphore = dispatch_semaphore_create(1);
    timeBefore = CFAbsoluteTimeGetCurrent();
    for(i=0; i<count; i++){
        dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
        dispatch_semaphore_signal(semaphore);
    }
    timeCurrent = CFAbsoluteTimeGetCurrent();
    printf("dispatch_semaphore used : %f\n", timeCurrent-timeBefore);

    //OSSpinLockLock
    OSSpinLock spinlock = OS_SPINLOCK_INIT;
    timeBefore = CFAbsoluteTimeGetCurrent();
    for(i=0; i<count; i++){
        OSSpinLockLock(&spinlock);
        OSSpinLockUnlock(&spinlock);
    }
    timeCurrent = CFAbsoluteTimeGetCurrent();
    printf("OSSpinLock used : %f\n", timeCurrent-timeBefore);
}

执行结果:

由图可见发现:

OSSpinLock的性能最好,GCD的dispatch_semaphore紧随其后;

NSConditionLock和@synchronized性能较差;

PS:

1. 需要注意的是这里仅仅是对各种锁直接Lock和Unlock的性能测试,其中部分锁的使用条件上还是有细微的差异的,比如NSLock之类的还有tryLock等方法用于加锁,不同对象锁的功能偏向不一样等等,有兴趣的可以逐个搜索再更深入的研究不同锁之间的区别。

2. 另外,一般来说客户端很少会有这么大量的加锁解锁操作,所以日常来说这些锁的性能都是可以满足使用需求的。

本文对于iOS中的锁也是抛砖引玉,欢迎各位留言讨论。

时间: 2024-08-29 08:59:49

iOS并发编程--8种加锁方式及比较的相关文章

iOS并发编程笔记,包含GCD,Operation Queues,Run Loops,如何在后台绘制UI,后台I/O处理,最佳安全实践避免互斥锁死锁优先级反转等,以及如何使用GCD监视进程文件文件夹,并发测试的方案等

iOS并发编程笔记,包含GCD,Operation Queues,Run Loops,如何在后台绘制UI,后台I/O处理,最佳安全实践避免互斥锁死锁优先级反转等,以及如何使用GCD监视进程文件文件夹,并发测试的方案等 线程 使用Instruments的CPU strategy view查看代码如何在多核CPU中执行.创建线程可以使用POSIX 线程API,或者NSThread(封装POSIX 线程API).下面是并发4个线程在一百万个数字中找最小值和最大值的pthread例子: #import

002-多线程-锁-同步锁-synchronized几种加锁方式、Java对象头和Monitor、Mutex Lock、JDK1.6对synchronized锁的优化实现

一.synchronized概述基本使用 为确保共享变量不会出现并发问题,通常会对修改共享变量的代码块用synchronized加锁,确保同一时刻只有一个线程在修改共享变量,从而避免并发问题. synchronized结论: 1.java5.0之前,协调线程间对共享对象的访问的机制只有synchronized和volatile,但是内置锁在功能上存在一些局限性,jdk5增加了Lock以及ReentrantLock. 2.java5.0,增加了一种新的机制:显式锁ReentrantLock,注意它

iOS并发编程对比总结,NSThread,NSOperation,GCD - iOS

1. 多线程概念 进程 正在进行中的程序被称为进程,负责程序运行的内存分配 每一个进程都有自己独立的虚拟内存空间 线程 线程是进程中一个独立的执行路径(控制单元) 一个进程中至少包含一条线程,即主线程 可以将耗时的执行路径(如:网络请求)放在其他线程中执行 创建线程的目的就是为了开启一条新的执行路径,运行指定的代码,与主线程中的代码实现同时运行 1.1 多任务系统调度示意图 说明:每个应用程序由操作系统分配的短暂的时间片(Timeslice)轮流使用CPU,由于CPU对每个时间片的处理速度非常快

iOS 页面间几种传值方式(属性,代理,block,单例,通知)

iOS 页面间几种传值方式(属性,代理,block,单例,通知) 姜糖水 2015-05-03 52 阅读 iOS 移动开发 第二个视图控制器如何获取第一个视图控制器的部分信息 例如 :第二个界面中的lable显示第一个界面textField中的文本 这就需要用到属性传值.block传值 那么第一个视图控制器如何获的第二个视图控制器的部分信息 例如:第一个界面中的lable显示第二个界面textField中的文本 这就需要使用代理传值 页面间传值有八大传值方式,下面我们就简单介绍下页面间常用的五

iOS多线程的几种创建方式

1.NSThread 2.NSOperationQueue 3.GCD NSThread: 创建方式主要有两种: [NSThread detachNewThreadSelector:@selector(myThreadMainMethod:) toTarget:self withObject:nil]; 和 NSThread *myThread = [[NSThread alloc] initWithTarget:self selector:@selector(myThreadMainMetho

Java并发编程-非阻塞同步方式原子类(Atomic)的使用

非阻塞同步 在大多数情况下,我们为了实现线程安全都会使用Synchronized或lock来加锁进行线程的互斥同步,但互斥同步的最主要的问题就是进行线程的阻塞和唤醒所带来的性能问题,因此这种阻塞也称作阻塞同步.从处理问题的方式上说,互斥同步属于一种悲观的并发策略,总是认为只要不去做正确的同步措施,那就肯定会出现问题,无论共享数据是否真的会出现竞争,它都会进行加锁.用户态核心态转换.维护锁的计数器和检查是否有被阻塞的线程需要被唤醒等操作. 随着硬件指令集的发展,我们有了另一个选择:基于冲突检测的乐

iOS并发编程笔记【转】

线程 使用Instruments的CPU strategy view查看代码如何在多核CPU中执行.创建线程可以使用POSIX 线程API,或者NSThread(封装POSIX 线程API).下面是并发4个线程在一百万个数字中找最小值和最大值的pthread例子: #import <pthread.h> struct threadInfo { uint32_t * inputValues; size_t count; }; struct threadResult { uint32_t min;

iOS开发之4种存储方式

在iOS开发过程中,不管是做什么应用,都会碰到数据保存的问题.将数据保存到本地,能够让程序的运行更加流畅,不会出现让人厌恶的菊花形状,使得用户体验更好.下面介绍一下数据保存的方式: 1.NSKeyedArchiver:采用归档的形式来保存数据,该数据对象需要遵守NSCoding协议,并且该对象对应的类必须提供encodeWithCoder:和initWithCoder:方法.前一个方法告诉系统怎么对对象进行编码,而后一个方法则是告诉系统怎么对对象进行解码.例如对Possession对象归档保存.

iOS 页面间几种传值方式(属性,代理,block,单例,通知)

第二个视图控制器如何获取第一个视图控制器的部分信息 例如 :第二个界面中的lable显示第一个界面textField中的文本 这就需要用到属性传值.block传值 那么第一个视图控制器如何获的第二个视图控制器的部分信息 例如:第一个界面中的lable显示第二个界面textField中的文本 这就需要使用代理传值 页面间传值有八大传值方式,下面我们就简单介绍下页面间常用的五种传值方式: (一)属性传值 第二个界面中的lable显示第一个界面textField中的文本 首先我们建立一个RootVie