题意:有n个数,按顺序加入,求加入前Gi个数时第i个最小的数是多少
思路:这里需要用到STL里的优先队列priority_queue,建一个大堆和一个小堆,若想在一个无序的序列里找第n个小的数,可以先把一个序列的n-1个数放入大堆(即假设这n-1个数是该序列里最小的),然后向小堆里push数,若小堆头元素<大堆头元素(即最小的元素比最大的元素大,说明大堆里的数还不是最小的),则交换两个数。难点:这里如果只用一个小堆的话会超时;另外每输入的一个m数,要查询的最小的数正好是第i++个,即这里每输出一个数就把该数存入大堆里,正好使大堆里数的个数不断++(由0个不断增加),以方便下一次查询第i++个小的。 Black Box
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 7205 | Accepted: 2930 |
Description
Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions). There are two types of transactions:
ADD (x): put element x into Black Box;
GET: increase i by 1 and give an i-minimum out of all integers containing in the Black Box. Keep in mind that i-minimum is a number located at i-th place after Black Box elements sorting by non- descending.
Let us examine a possible sequence of 11 transactions:
Example 1
N Transaction i Black Box contents after transaction Answer (elements are arranged by non-descending) 1 ADD(3) 0 3 2 GET 1 3 3 3 ADD(1) 1 1, 3 4 GET 2 1, 3 3 5 ADD(-4) 2 -4, 1, 3 6 ADD(2) 2 -4, 1, 2, 3 7 ADD(8) 2 -4, 1, 2, 3, 8 8 ADD(-1000) 2 -1000, -4, 1, 2, 3, 8 9 GET 3 -1000, -4, 1, 2, 3, 8 1 10 GET 4 -1000, -4, 1, 2, 3, 8 2 11 ADD(2) 4 -1000, -4, 1, 2, 2, 3, 8
It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type.
Let us describe the sequence of transactions by two integer arrays:
1. A(1), A(2), ..., A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2).
2. u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6).
The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence.
Input
Input contains (in given order): M, N, A(1), A(2), ..., A(M), u(1), u(2), ..., u(N). All numbers are divided by spaces and (or) carriage return characters.
Output
Write to the output Black Box answers sequence for a given sequence of transactions, one number each line.
Sample Input
7 4 3 1 -4 2 8 -1000 2 1 2 6 6
Sample Output
3 3 1 2
1 #include <stdio.h> 2 #include <string.h> 3 #include <iostream> 4 #include <algorithm> 5 #include <cstdio> 6 #include <cstring> 7 #include <cmath> 8 #include <stack> 9 #include <queue> 10 #include <functional> 11 #include <vector> 12 #include <map> 13 //priority_queue<int> pq; 14 //queue<int >q; 15 using namespace std; 16 17 #define M 0x0f0f0f0f 18 #define min(a,b) (a>b?b:a) 19 #define max(a,b) (a>b?a:b) 20 int main() 21 { 22 int m,n; 23 int i,j,b,c,t; 24 int a[30005]; 25 scanf("%d %d",&n,&m); 26 priority_queue< int,vector<int>,greater<int> >small; 27 priority_queue< int>large; 28 for(i=0; i<n; i++) 29 scanf("%d",&a[i]); 30 c=0; 31 for(i=0; i<m; i++) 32 { 33 scanf("%d",&b); 34 while(c<b) 35 { 36 small.push(a[c]); 37 if(!large.empty()&&small.top()<large.top()) 38 { 39 t=small.top(); 40 small.pop(); 41 small.push(large.top()); 42 large.pop(); 43 large.push(t); 44 } 45 c++; 46 } 47 printf("%d\n",small.top()); 48 //精华!!!! 49 large.push(small.top());//每次i++,让large里放一个数,使得以后每次比较时 50 small.pop(); //保证small里的第一个数是第i个最小的!!!!! 51 } 52 return 0; 53 }
poj1442 Black Box 栈和优先队列