Golang的Interface是个什么鬼

问题概述

Golang的interface,和别的语言是不同的。它不需要显式的implements,只要某个struct实现了interface里的所有函数,编译器会自动认为它实现了这个interface。第一次看到这种设计的时候,我的第一反应是:What the fuck?这种奇葩的设计方式,和主流OO语言显式implement或继承的区别在哪儿呢?

直到看了SICP以后,我的观点发生了变化:Golang的这种方式和Java、C++之流并无本质区别,都是实现多态的具体方式。而所谓多态,就是“一个接口,多种实现”。

SICP里详细解释了为什么同一个接口,需要根据不同的数据类型,有不同的实现;以及如何做到这一点。在这里没有OO的概念,先把OO放到一边,从原理上看一下这是怎么做到的。

先把大概原理放在这里,然后再举例子。为了实现多态,需要维护一张全局的查找表,它的功能是根据类型名和方法名,返回对应的函数入口。当我增加了一种类型,需要把新类型的名字、相应的方法名和实际函数入口添加到表里。这基本上就是所谓的动态绑定了,类似于C++里的vtable。对于SICP中使用的lisp语言来说,这些工作需要手动完成。而对于java,则通过implements完成了这项工作。而golang则用了更加激进的方式,连implements都省了,编译器自动发现自动绑定。

一个复数包的例子

SICP里以复数为例,我用clojure、java和golang分别实现了一下,代码放在https://github.com/nanoix9/golang-interface。这里的目的是实现一个复数包,它支持直角坐标(rectangular)和极坐标(polar)两种实现方式,但是两者以相同的形式提供对外的接口,包括获取实部、虚部、模、辐角四个操作,文中简单起见,仅以获取实部为例。代码中有完整的内容。

Clojure版

对于直角坐标,用一个两个元素的列表表示它,分别是实部和虚部。

(defn make-rect [r i] (list r i))

对于极坐标,也是含有两个元素的列表,分别表示模和辐角

(defn make-polar [abs arg] (list abs arg))

现在要加一个“取实部”的函数get-real。问题来了,我希望这个函数能同时处理两种坐标,而且对于使用者来说,无论使用哪种坐标表示,get-real函数的行为是一致的。最简单的想法是,增加一个tag字段用于区分两种类型,然后get-real根据类型信息执行不同的操作。

为此,定义attach-tagget-tagget-content函数用于关联标签、提取标签和提取内容:

(defn attach-tag [tag data] (list tag data))
(defn get-tag [data-with-tag] (first data-with-tag))
(defn get-content [data-with-tag] (second data-with-tag))

在构造复数的函数中加入tag

(defn make-rect [r i] (attach-tag ‘rect (list r i)))
(defn make-polar [abs arg] (attach-tag ‘polar (list abs arg)))

get-real函数首先获取tag,根据直角坐标或极坐标执行不同的操作

(defn get-real [c]
  (let [tag (get-tag c)
        num (get-content c)]
    (cond (= tag ‘rect) (first num)
          (= tag ‘polar) (* (first num) (Math/cos (second num)))
          :else (println "Unknown complex type:" tag))))

但是这样有个问题,如果要加第三种类型怎么办?必须修改get-real函数。也就是说,要增加一种实现,必须改动函数主入口。有没有方法避免呢?答案就是采用前面的查找表(当然这不是唯一方法,SICP中还介绍了消息传递方法,这里就不介绍了)。这个查找表提供get-opput-op两个方法

 (defn get-op [tag op-name] ...
 (defn put-op [tag op-name func] ...)

这里只给出原型,get-op根据类型名和方法名,获取对应的函数入口。而put-op向表中增加类型名、方法名和函数入口。这张表的内容直观上可以这么理解

tag\op-name ‘get-real ‘get-image ...
‘rect get-real-rect get-image-rect ...
‘polar get-real-polar get-image-polar ...

于是get-real函数可以这样实现:首先每种类型各自将自己的函数入口添加到查找表

(defn install-rect []
  (letfn [(get-real [c] (first c))]
    put-op ‘rect ‘get-real get-real))

(defn install-polar []
  (letfn [(get-real [c] (* (first c) (Math/cos (second c))))]
    put-op ‘polar ‘get-real get-real))

(install-rect)
(install-polar)

注意这里用了局部函数letfn,所以两种类型都用get-real作为函数名并不冲突。

定义apply-generic函数,用来从查找表中获取函数入口,并把tag去掉,将内容和剩余参数送给获取到的函数

(defn apply-generic [op-name tagged-data & args]
  (let [tag (get-tag tagged-data)
        content (get-content tagged-data)
        func (get-op tag op-name)]
    (if (null? func)
        (println "No entry for data type" tag "and method" op-name))
        (apply func (cons content args))))

get-real函数可以实现了

(defn get-real [c]
    (apply-generic ‘get-real c))

Java版

Java实现复数包就不需要这么麻烦了,编译器完成了大部分工作。当然Java是静态语言,还有类型检查。

public interface Complex {
    public double getReal();
    ...
}

public class ComplexRect implements Complex {

    private double real;
    private double image;

    public double getReal() {
        return real;
    }

    ...
}

public class ComplexPolar implements Complex {

    private double abs;
    private double arg;

    public double getReal() {
        return abs * Math.cos(arg);
    }

    ...
}

Golang版

Golang和Java的差别就是省去了implements

type Complex interface {
    GetReal() float64
    ...
}

type ComplexRect struct {
    real, image float64
}

func (c ComplexRect) GetReal() {
    return c.real
}

...

type ComplexPolar struct {
    abs, arg float64
}

func (c ComplexPolar) GetReal() {
    return c.abs * math.Cos(c.arg)
}

...

乍一看看不出ComplexRectComplex之间有什么关系,它是隐含的,编译器自动发现。这样的做法更灵活,比如增加一个新的接口类型,编译器会自动发现那些struct实现了该接口,而无需修改struct的代码。如果是java,就必须修改源代码,显式的implements

总结

通过这个问题,我意识到,OO只不过是一种方法,其实本没有什么对象。至于为什么要OO,最根本的,是要实现“一个接口,多种实现”,这就要求接口是稳定的,而实现有可能是多变的。如果接口也是经常变的,那就没必要把接口抽象出来了。至于代码结构是否反映了世界的继承/组合等关系,这并不重要,也不是根本的。重要的是,将稳定的接口和不稳定的实现分离,使得改动某个模块的时候,不至于影响到其他部分。这是软件本质上的复杂性提出的要求,对于大型软件来说,模块的分解和隔离尤为重要。

为了达到这个目的,C++实现了vtable,Java提供了interface,Golang则自动发现这种关系。可以用OO,也可以不用OO。无论语言提供了哪种方式,背后的思想是统一的。甚至我们可以在语言特性满足不了需求的时候,自己实现相关的机制,例如spring,通过xml完成依赖注入,这使得可以在不改动源代码的情况下,用一种实现替换另一种实现。

时间: 2024-10-31 11:29:04

Golang的Interface是个什么鬼的相关文章

Golang中interface{}作为函数参数和函数返回值的使用

package main import (     "errors"     "fmt" ) type item struct {     Name string } func (i item) String() string {     return fmt.Sprintf("item name: %v", i.Name) } type person struct {     Name string     Sex  string } func

Golang-interface(一 基本使用)

github: https://github.com/ZhangzheBJUT/blog/blob/master/interface.md 一 接口概述 如果说gorountine和channel是支撑起Go语言的并发模型的基石,让Go语言在如今集群化与多核化的时代成为一道亮丽的风景,那么接口是Go语言整个类型系列的基石,让Go语言在基础编程哲学的探索上达到前所未有的高度. Go语言在编程哲学上是变革派,而不是改良派.这不是因为Go语言有gorountine和channel,而更重要的是因为Go

Golang-interface(二 接口与nil)

github: https://github.com/ZhangzheBJUT/blog/blob/master/nil.md 一 接口与nil 前面讲解了go语言中接口的基本使用方法,下面将说一说nil在接口中的使用. 从上面一节我们知道在底层,interface作为两个成员实现:一个类型和一个值.该值被称为接口的动态值, 它是一个任意的具体值,而该接口的类型则为该值的类型.对于 int 值3, 一个接口值示意性地包含(int, 3). 只有在内部值和类型都未设置时(nil, nil),一个接

Golang-interface(四 反射)

github:https://github.com/ZhangzheBJUT/blog/blob/master/reflect.md 一 反射的规则 反射是程序运行时检查其所拥有的结构,尤其是类型的一种能力:这是元编程的一种形式.它同时也是造成混淆的重要来源. 每个语言的反射模型都不同(同时许多语言根本不支持反射).本节将试图明确解释在 Go 中的反射是如何工作的. 1. 从接口值到反射对象的反射 在基本的层面上,反射只是一个检查存储在接口变量中的类型和值的算法.在 reflect 包中有两个类

golang的interface到其他类型的数据转换

以string为例 package main import "fmt" func main() { var a interface{} var b string a = "asdasdasdasd" b = a.(string) fmt.Println(a, b) } golang的interface到其他类型的数据转换

golang 关于 interface 的学习整理

Golang-interface(四 反射) go语言学习-reflect反射理解和简单使用 为什么在Go语言中要慎用interface{} golang将interface{}转换为struct go reflect struct 遍历,反射 Golang Reflect反射的使用详解1 Go 语言反射三定律 原文地址:https://www.cnblogs.com/xuange306/p/10674158.html

golang之interface

一.概述 接口类型是对 "其他类型行为" 的抽象和概况:因为接口类型不会和特定的实现细节绑定在一起:很多面向对象都有类似接口概念,但Golang语言中interface的独特之处在于它是满足隐形实现的.也就是说,我们没有必要对于给定的具体类型定义所有满足的接口类型:简单拥有一些必需的就ok了: 此时,我们对于interface还是比较迷茫,关键在于interface与其他具体类型(除interface之后都是具体类型)的不同之处在于,interface是抽象的:比如我们看到int类型,

golang中interface接口的深度解析

什么是interface,简单的说,interface是一组method的组合,下面这篇文章主要给大家深度解析了关于golang中的interface接口,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧. 一 接口介绍 如果说gorountine和channel是支撑起Go语言的并发模型的基石,让Go语言在如今集群化与多核化的时代成为一道亮丽的风景,那么接口是Go语言整个类型系列的基石,让Go语言在基础编程哲学的探索上达到前所

Golang之interface(多态)

多态用法 package main //一种事物的多种形态,都可以按照统一的接口进行操作 //多态 import ( "fmt" "math/rand" "sort" ) type Student struct { Name string Id string Age int sortType int } type Book struct { Name string Author string } //切片默认传地址 type StudentArr