线性回归 Linear Regression

什么是线性回归?

y = f(x), a function that representing the relationship between input x and output y. The Function we used here is the general Linear Function.

`

常用的线性回归函数

1.多项式函数(Polynominal Function)

(graph from wikipedia)

Comments:

1. most common function, fitting to most cases in life.

2. y is ranged from .

3. x is ranged from 

4. one x only has one y. (say, otherwise, for , one x has 2 different y)

2.sigmoid 函数(Sigmoid Function)

(graph from wikipedia)

Comments:

1. y is ranged from 0 to 1 (so it can represent the pobability, that‘s why the logistic regression uses this function to fitting the relationship between the prob and input)

2.x is ranged from 

2.RBF 函数(Radial Basis Function)

(graph from wikipedia)

Comments:

1. radially symmetric

2. wide used (e.g. Gaussian Prob Density)

2017-08-15

线性模型的效果受线性公式影响, 应当选择和当前应用项目匹配的函数。

时间: 2024-10-18 07:39:17

线性回归 Linear Regression的相关文章

Ng第二课:单变量线性回归(Linear Regression with One Variable)

二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下降的直观理解 2.6  梯度下降的线性回归 2.7  接下来的内容 2.1  模型表示 之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示: 我们将要用来描述这个回归问题的标记如下: m                代表训练集中实例的数量 x          

机器学习方法(一):线性回归Linear regression

开一个机器学习方法科普系列,也做基础回顾之用.学而时习之. content: linear regression, Ridge, Lasso Logistic Regression, Softmax Kmeans, GMM, EM, Spectral Clustering Dimensionality Reduction: PCA.LDA.Laplacian Eigenmap. LLE. Isomap(修改前面的blog) SVM C3.C4.5 Apriori,FP PageRank minH

Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine

多元线性回归(Linear Regression with multiple variables)与最小二乘(least squat)

1.线性回归介绍 X指训练数据的feature,beta指待估计得参数. 详细见http://zh.wikipedia.org/wiki/%E4%B8%80%E8%88%AC%E7%BA%BF%E6%80%A7%E6%A8%A1%E5%9E%8B 使用最小二乘法拟合的普通线性回归是数据建模的基本方法. 令最小二乘项的偏导为0(为0时RSS项最小),求Beta估计值,得到最小二乘的向量形式. 最小二乘其实就是找出一组参数beta使得训练数据到拟合出的数据的欧式距离最小.如下图所示,使所有红点(训练

机器学习方法:回归(一):线性回归Linear regression

开一个机器学习方法科普系列:做基础回想之用.学而时习之:也拿出来与大家分享.数学水平有限,仅仅求易懂,学习与工作够用.周期会比較长.由于我还想写一些其它的,呵呵. content: linear regression, Ridge, Lasso Logistic Regression, Softmax Kmeans, GMM, EM, Spectral Clustering Dimensionality Reduction: PCA.LDA.Laplacian Eigenmap. LLE. Is

机器学习 Machine Learning(by Andrew Ng)----第二章 单变量线性回归(Linear Regression with One Variable)

第二章 单变量线性回归(Linear Regression with One Variable) <模型表示(Model Representation)>                                                             <代价函数(Cost Function)>                                                          <梯度下降(Gradient Descent)

Stanford公开课机器学习---2.单变量线性回归(Linear Regression with One Variable)

单变量线性回归(Linear Regression with One Variable) 2.1 模型表达(Model Representation) m 代表训练集中实例的数量 x 代表特征/输入变量 y 代表目标变量/输出变量 (x,y) 代表训练集中的实例 (x(i),y(i) ) 代表第 i 个观察实例 h 代表学习算法的解决方案或函数也称为假设(hypothesis) 单变量线性回归:只含有一个特征/输入变量 x hθ=θ0+θ1x 2.2 代价函数(Cost Function) 目标

机器学习 (一) 单变量线性回归 Linear Regression with One Variable

文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang和 JerryLead 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 1.  单变量线性回归 Linear Regression with One Variable 1. 代价函数Cost Function 在单变量线性回归中,已知有一个训练集有一些关于x.y的数据(如×所示),当我们的预测值

机器学习笔记01:线性回归(Linear Regression)和梯度下降(Gradient Decent)

最近在Coursera上看吴大神的Machine Learning,感觉讲的真的很棒.所以觉得应该要好好做做笔记,一方面是加强自己对ML中一些方法的掌握程度和理解,另一方面也能方便自己或者同样爱好ML的同学. 线性回归(Linear Regression) 线性回归(Linear Regression)应该是机器学习中最基本的东西了.所谓回归,想必大家在高中时期的课程里面就接触过,给定一系列离散的点(x0,y0),求一条直线 f(x)=ax+b 以使得最小.在machine learning 中

Machine_learning_cs229线性回归 Linear regression(2)

这篇博客针对的AndrewNg在公开课中未讲到的,线性回归梯度下降的学习率进行讨论,并且结合例子讨论梯度下降初值的问题. 线性回归梯度下降中的学习率 上一篇博客中我们推导了线性回归,并且用梯度下降来求解线性回归中的参数.但是我们并没有考虑到学习率的问题. 我们还是沿用之前对于线性回归形象的理解:你站在山顶,环顾四周,寻找一个下山最快的方向走一小步,然后再次环顾四周寻找一个下山最快的方向走一小步,在多次迭代之后就会走到最低点.那么在这个理解中,学习率其实是什么呢?学习率就是你走的步子有多长. 所以