希尔排序又叫分组插入排序、缩小增量排序。
它通过比较相距一定间隔的元素来工作;各趟比较所用的距离随着算法的进行而减小,直到只比较相邻元素的最后一趟比较为止。
简单的说就是先将整个序列分割成若干子序列(由相隔某个增量的元素组成),分别进行插入排序。然后依次缩减增量再进行排序,待整个序列中元素基本有序时,再对全体元素就行一次插入排序(因为此时整个序列已经基本有序了,用插入排序效率比较高,子序列排序时也是这个道理吧)。
public static void shellSort(int[] a){ if(a==null){ return; } int n = a.length; //确定增量序列为:n/2,2/4,...,1 for(int gap=n/2; gap>0; gap /=2){ for(int i=0; i<gap; i++){ //对每个子序列插入排序 for(int j=i+gap; j<n; j+=gap){ int temp = a[j]; ////注意这的条件,k>=0并且a[k]>temp,若写成k>0那么第一个元素就没参加排序了 for(int k=j-gap; k>=0&&a[k]>temp;k-=gap){ a[k+gap] = a[k]; a[k] = temp; } } } } }
希尔排序的时间复杂度比O(N^2)要好,因为它一轮排序时对一些相距较远的元素进行了交换。
虽然每个子序列的排序是插入排序,并且插入排序是稳当的,但是在不同子序列的插入排序过程中,大小相同的元素可能在各自的插入排序中移动,导致了整体的稳定性被打破,所以希尔排序也是不稳定的啦。
时间: 2024-11-04 17:02:29