Prims算法 - 最小生成树

2017-07-26  14:35:49

Prims算法,是一种基于“贪心”的求最小树的算法 ,以每次加入一个邻接边来建立最小树,直到找到N-1个边为止。

规则:以开始时生成树的集合为起始的顶点,然后找出与生成树集合邻接的边中,加权值最小的边来生成树,

为了确定新加入的边不会造成回路,所以每一个新加入的边,只允许有一个顶点在生成树的集合中。

适用:稠密图

用自己的话来讲:Prims算法跟之前的Kruskal算法不大一样,Kruskal算法主要是通过对权值进行从低到高的排序,确定先后加入的边

Prims算法则比较高级,从某一个点出发,寻找到跟这个点最近的这个点,两个组成集合,查找离这两个点最近的几个点,找到最近的点,

将其加入到生成树中,组成集合,一直到找到N-1个边为止;



代码如下:

//这里使用无向图
#include <iostream>

using namespace std;

const int MAXN = 2001;
const int INF = 99999999;

int n,e;
int w[MAXN][MAXN];
int mincount[MAXN]; //从初始顶点到该顶点的最小权值

void init()
{
    int i,j;
    int tx,ty;
    for(i = 0; i<=MAXN; i++)
        for(j =0; j<MAXN; j++)
            w[i][j] = INF;

    cin >> n >> e;

    for(i = 1; i<=e; i++)
    {
        cin >> tx >> ty >> w[tx][ty];
        w[tx][ty] = w[ty][tx];
    }
}

void prim(int s)   //从标号为s处开始生成树
{
    int i,j,cnt = 0,min; // cnt 是生成树所有边的权值之和
    int k;
    for(i = 1; i<= n; i++)
        mincount[i] = w[s][i]; //  初始化,设w[1][i]是初始点k到i的最小权值,如果没有就设为INF
    mincount[s] = 0;

    for(i = 1; i < n; i++) //一共有n-1次
    {
        min = INF;
        for(j = 1; j <= n; j++)
        {
            if(mincount[j]!=0 && mincount[j]<min)
            {
                min = mincount[j];
                k = j;        //记录该点
            }
            mincount[k] = 0;//将该点加入到最小生成树中
            cnt += min;   //将这条边权值加入到最小生成树中

            for(j = 1;j<=n;j++)  //修正初始点到每个点的最小权值
            {
                  if(w[k][j]<mincount[j])
                        mincount[j] = w[k][j];
            }
        }
    }
    cout << cnt << endl;
}

int main()
{
    init();
    prim(1);
    return 0;
}
时间: 2024-11-03 21:39:21

Prims算法 - 最小生成树的相关文章

还是畅通工程(peime算法最小生成树)

个人心得:就是最小生成树的运用,还是要理解好每次都是从已搭建好的生成树里面选择与她的补集中最短距离,所以那个book数组的更新 需要好生体会.不过还是有缺陷,算法的复杂度为O(n^2),看介绍说用优先队列加堆会达到O(n*long n),不过很可惜看不懂,太菜了 某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离.省政府"畅通工程"的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小.请计算最小的

数据结构课程设计-克鲁斯卡尔算法最小生成树

假设连通网N=(V,{E}),则令最小生成树的初始状态为只有n个顶点而无边的非连通图T=(V,{∮}),图中每个顶点自成一个连通分量.在E中选择代价最小的边,若该边依附的顶点落在T中不同的连通分量上,则将此边加入到T中,否则舍去此边而选择下一条代价最小的边.依次类推,直至T中所有顶点都在同一连通分量上为止. (1)根据原图,构造一个只含n个顶点,边集为空的子图.若将图中各个顶点看成一棵树的根节点,则它是一个含有n棵树的森林. (2)从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不

Prim算法---最小生成树

最小生成树的Prim算法也是贪心算法的一大经典应用.Prim算法的特点是时刻维护一棵树,算法不断加边,加的过程始终是一棵树. Prim算法过程: 一条边一条边地加, 维护一棵树. 初始 E = {}空集合, V = {任意节点} 循环(n – 1)次,每次选择一条边(v1,v2), 满足:v1属于V , v2不属于V.且(v1,v2)权值最小. E = E + (v1,v2)V = V + v2 最终E中的边是一棵最小生成树, V包含了全部节点. 以下图为例介绍Prim算法的执行过程. Prim

贪心算法-最小生成树Kruskal算法和Prim算法

Kruskal算法: 不断地选择未被选中的边中权重最轻且不会形成环的一条. 简单的理解: 不停地循环,每一次都寻找两个顶点,这两个顶点不在同一个真子集里,且边上的权值最小. 把找到的这两个顶点联合起来. 初始时,每个顶点各自属于自己的子集合,共n个子集合. 每一步操作,都会将两个子集合融合成一个,进而减少一个子集合. 结束时,所有的顶点都在同一个子集合里,这个子集合就是最小生成树. 例子: 伪代码: Prim算法: G=(V,E),S是V的真子集,如果u在S中,v在V-S中,且(u,v)是图的一

图基本算法 最小生成树 Prim算法(邻接表+优先队列STL)

这篇文章是对<算法导论>上Prim算法求无向连通图最小生成树的一个总结,其中有关于我的一点点小看法. 最小生成树的具体问题可以用下面的语言阐述: 输入:一个无向带权图G=(V,E),对于每一条边(u, v)属于E,都有一个权值w. 输出:这个图的最小生成树,即一棵连接所有顶点的树,且这棵树中的边的权值的和最小. 举例如下,求下图的最小生成树: 这个问题是求解一个最优解的过程.那么怎样才算最优呢? 首先我们考虑最优子结构:如果一个问题的最优解中包含了子问题的最优解,则该问题具有最优子结构. 最小

图表算法—最小生成树

1. 什么是最小生成树(Minimum Spanning Trees) 对于一个无向图,如果它的所有边都带有一定的数值(即带权),则会变成下面的样子 假设这些点都是城市,每个城市之间的连线代表城市间的道路,线上的数字代表着道路的长短.当然,修越长的道路就需要越多的资源. 那么如果要用最少的资源把所有城市都联系起来(即任意城市A能沿着道路抵达任意城市B),我们应该怎样建设道路呢?答案如下图: 则就是最小生成树:用最小的权值总和(即数值总和)把所有点都联系起来.应注意到:最小生成树的边总数=此无向图

hiho 1098 最小生成树二&#183;Kruscal算法 (最小生成树)

题目: 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 随着小Hi拥有城市数目的增加,在之间所使用的Prim算法已经无法继续使用了——但是幸运的是,经过计算机的分析,小Hi已经筛选出了一些比较适合建造道路的路线,这个数量并没有特别的大. 所以问题变成了——小Hi现在手上拥有N座城市,且已知其中一些城市间建造道路的费用,小Hi希望知道,最少花费多少就可以使得任意两座城市都可以通过所建造的道路互相到达(假设有A.B.C三座城市,只需要在AB之间和BC之间建造道路,那么A

算法 - 最小生成树

什么是最小生成树 ? 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边.最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出. 最小权重生成树又是什么 ? 在一给定的无向图G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即),而 w(u, v) 代表此边的权重,若存在 T 为 E 的子集(即)且为无循环图,使得 的 w(T) 最小,则此 T 为 G 的最小生成树. 最小生成树其实

Prim算法——最小生成树

#include <bits/stdc++.h> using namespace std; const int maxn=100000+15; const int maxm=100000+15; struct Edge { int x,y,z,next; Edge(int x=0,int y=0,int z=0,int next=0):x(x),y(y),z(z),next(next) {} }edge[maxm*2]; const bool operator < (const Edge