【转】梯度下降算法原理

Logistic回归的理论内容上篇文章已经讲述过,在求解参数时可以用牛顿迭代,可以发现这种方法貌似

太复杂,今天我们介绍另一种方法,叫梯度下降。当然求最小值就是梯度下降,而求最大值相对就是梯度上升。

由于,如果,那么得到

现在我们要找一组,使得所有的最接近,设

现在我们要找一组,使得最小。这就是今天要介绍的梯度下降。

梯度下降的原理是这样的:首先对于向量赋初值,可以赋随机值,也可以全赋为0,然后改变的值,使得

按梯度下降最快的方向进行,一直迭代下去最终会得到局部最小值。即

表示梯度最陡的那个方向,表示步长,也就是说每次向下降最快的方向走多远。进一步有

所以

简化一下就是

时间: 2024-12-14 19:14:55

【转】梯度下降算法原理的相关文章

机器学习:梯度下降算法原理讲解

背景 学习机器学习时作为基础概念. 转载自: <梯度下降算法原理讲解--机器学习> 1. 概述 梯度下降(gradient descent)在机器学习中应用十分的广泛,不论是在线性回归还是Logistic回归中,它的主要目的是通过迭代找到目标函数的最小值,或者收敛到最小值. 本文将从一个下山的场景开始,先提出梯度下降算法的基本思想,进而从数学上解释梯度下降算法的原理,解释为什么要用梯度,最后实现一个简单的梯度下降算法的实例! 2. 梯度下降算法 2.1 场景假设 梯度下降法的基本思想可以类比为

梯度下降算法VS正规方程算法

梯度下降算法的大家族: ①批量梯度下降:有N个样本,求梯度的时候就用了N个样本的梯度数据 优点:准确 缺点:速度慢 ②随机梯度下降:和批量梯度下降算法原理相似,区别在于求梯度时没有用所有的N歌样本数据,而是仅仅选取1个来求梯度 优点:速度快 缺点:准去率地 ③小批量梯度下降:批量梯度下降算法和随机梯度下降算法的折中,比如N=100,spark中使用此方法 原文地址:https://www.cnblogs.com/zgl19991001/p/11011011.html

自适应滤波:梯度下降算法

作者:桂. 时间:2017-04-01  06:39:15 链接:http://www.cnblogs.com/xingshansi/p/6654372.html 声明:欢迎被转载,不过记得注明出处哦~ [学习笔记07] 未完待续 前言 西蒙.赫金的<自适应滤波器原理>第四版第四章:最速下降算法.优化求解按照有/无约束分类:如投影梯度下降算法((Gradient projection)便是有约束的优化求解:按照一阶二阶分类:梯度下降(Gradient descent).Newton法等:按照偏

梯度下降算法的一点认识

昨天开始看Ng教授的机器学习课,发现果然是不错的课程,一口气看到第二课. 第一课 没有什么新知识,就是机器学习的概况吧. 第二课 出现了一些听不太懂的概念.其实这堂课主要就讲了一个算法,梯度下降算法.到了教授推导公式的时候感觉有点蒙,不过后来仔细想想,也大概理解了,这个算法并没有想象的晦涩.在这堂课中,梯度下降算法是为了解决线性回归问题的.视频中的例子是给你一堆训练数据,(房子面积和对应房价),如果此时给你一个没有出现过的房子面积数据,您能否给出正确的房价?解决思路是首先要看出来房子面积跟房价之

flink 批量梯度下降算法线性回归参数求解(Linear Regression with BGD(batch gradient descent) )

1.线性回归 假设线性函数如下: 假设我们有10个样本x1,y1),(x2,y2).....(x10,y10),求解目标就是根据多个样本求解theta0和theta1的最优值. 什么样的θ最好的呢?最能反映这些样本数据之间的规律呢? 为了解决这个问题,我们需要引入误差分析预测值与真实值之间的误差为最小. 2.梯度下降算法 梯度下降的场景: 梯度下降法的基本思想可以类比为一个下山的过程.假设这样一个场景:一个人被困在山上,需要从山上下来(i.e. 找到山的最低点,也就是山谷). 但此时山上的浓雾很

简单多元线性回归(梯度下降算法与矩阵法)

多元线性回归是最简单的机器学习模型,通过给定的训练数据集,拟合出一个线性模型,进而对新数据做出预测. 对应的模型如下: n: 特征数量. 一般选取残差平方和最小化作为损失函数,对应为: M:训练样本数量. 通过最小化代价损失函数,来求得 值,一般优化的方法有两种,第一是梯度下降算法(Gradient Descent),第二种是矩阵法(The normal equations). 梯度下降算法

梯度下降算法笔记

今天课上主要讲的是梯度下降算法. 上一次老师留了梯度下降算法求解线性回归的作业.大部分用java和C++实现的. 笔记也主要来自课程ppt,老师课程的ppt也主要参考的斯坦福吴恩达老师的讲义. 梯度下降法(英语:Gradient descent)是一个一阶最优化算法,通常也称为最速下降法. 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索.如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点:这个过程则被称为梯度

梯度下降算法

首先定义几个符号: Xi vector[X]:input data Yi vector[Y]:output data h(X) hypothesis function 对于输入的数据给出预测值 Y is continous variation?regression problem(回归问题) Y is discrete variation?classification problem(分类问题) PART 1:线性回归 如图,蓝色的离散点是Xi,红色的线就是求出的回归函数. hypothesis

在Spark上用Scala实验梯度下降算法

首先参考的是这篇文章:http://blog.csdn.net/sadfasdgaaaasdfa/article/details/45970185 但是其中的函数太老了.所以要改.另外出发点是我自己的这篇文章 http://www.cnblogs.com/charlesblc/p/6206198.html 里面关于梯度下降的那幅图片. 改来改去,在随机化向量上耗费了很多时间,最后还是做好了.代码如下: package com.spark.my import org.apache.log4j.{L