NASA Metadata: tf-idf of Description Texts and Keywords

NASA有32,000多个数据集,并且NASA有兴趣了解这些数据集之间的联系,以及与NASA以外其他政府组织中其他重要数据集的联系。有关NASA数据集的元数据  可以JSON格式在线获得。让我们使用tf-idf在描述字段中找到重要的单词,并将其与关键字联系起来。

获取和整理NASA元数据

让我们下载32,000多个NASA数据集的元数据。

library(jsonlite)
library(dplyr)
library(tidyr)
metadata <- fromJSON("https://data.nasa.gov/data.json")
names(metadata$dataset)
##  [1] "_id"                "@type"              "accessLevel"        "accrualPeriodicity"
##  [5] "bureauCode"         "contactPoint"       "description"        "distribution"
##  [9] "identifier"         "issued"             "keyword"            "landingPage"
## [13] "language"           "modified"           "programCode"        "publisher"
## [17] "spatial"            "temporal"           "theme"              "title"
## [21] "license"            "isPartOf"           "references"         "rights"
## [25] "describedBy"
nasadesc <- data_frame(id = metadata$dataset$`_id`$`$oid`, desc = metadata$dataset$description)
nasadesc
## # A tibble: 32,089 x 2
##                          id
##                       <chr>
## 1  55942a57c63a7fe59b495a77
## 2  55942a57c63a7fe59b495a78
## 3  55942a58c63a7fe59b495a79
## 4  55942a58c63a7fe59b495a7a
## 5  55942a58c63a7fe59b495a7b
## 6  55942a58c63a7fe59b495a7c
## 7  55942a58c63a7fe59b495a7d
## 8  55942a58c63a7fe59b495a7e
## 9  55942a58c63a7fe59b495a7f
## 10 55942a58c63a7fe59b495a80
## # ... with 32,079 more rows, and 1 more variables: desc <chr>

 

## # A tibble: 32,089 x 2
##                          id
##                       <chr>
## 1  55942a57c63a7fe59b495a77
## 2  55942a57c63a7fe59b495a78
## 3  55942a58c63a7fe59b495a79
## 4  55942a58c63a7fe59b495a7a
## 5  55942a58c63a7fe59b495a7b
## 6  55942a58c63a7fe59b495a7c
## 7  55942a58c63a7fe59b495a7d
## 8  55942a58c63a7fe59b495a7e
## 9  55942a58c63a7fe59b495a7f
## 10 55942a58c63a7fe59b495a80
## # ... with 32,079 more rows, and 1 more variables: desc <chr>

让我们打印出其中的一部分。

nasadesc %>% select(desc) %>% sample_n(5)
## # A tibble: 5 x 1
##                                                                                                                                                      desc
##                                                                                                                                                     <chr>
## 1  A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced as a retrospective dataset at the JPL P
## 2  ML2CO is the EOS Aura Microwave Limb Sounder (MLS) standard product for carbon monoxide derived from radiances measured by the 640 GHz radiometer. The
## 3                                                                                                              Crew lock bag. Polygons: 405 Vertices: 514
## 4  JEM Engineering proved the technical feasibility of the FlexScan array?a very low-cost, highly-efficient, wideband phased array antenna?in Phase I, an
## 5 MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the\nTerra (EOS AM) and Aqua (EOS PM) satellites. Terra‘s orbit aro

这是关键词。

nasakeyword <- data_frame(id = metadata$dataset$`_id`$`$oid`,
                          keyword = metadata$dataset$keyword) %>%
        unnest(keyword)
nasakeyword

## # A tibble: 126,814 x 2
##                          id       keyword
##                       <chr>         <chr>
## 1  55942a57c63a7fe59b495a77 EARTH SCIENCE
## 2  55942a57c63a7fe59b495a77   HYDROSPHERE
## 3  55942a57c63a7fe59b495a77 SURFACE WATER
## 4  55942a57c63a7fe59b495a78 EARTH SCIENCE
## 5  55942a57c63a7fe59b495a78   HYDROSPHERE
## 6  55942a57c63a7fe59b495a78 SURFACE WATER
## 7  55942a58c63a7fe59b495a79 EARTH SCIENCE
## 8  55942a58c63a7fe59b495a79   HYDROSPHERE
## 9  55942a58c63a7fe59b495a79 SURFACE WATER
## 10 55942a58c63a7fe59b495a7a EARTH SCIENCE
## # ... with 126,804 more rows

最常见的关键字是什么?

nasakeyword %>% group_by(keyword) %>% count(sort = TRUE)

## # A tibble: 1,774 x 2
##                    keyword     n
##                      <chr> <int>
## 1            EARTH SCIENCE 14362
## 2                  Project  7452
## 3               ATMOSPHERE  7321
## 4              Ocean Color  7268
## 5             Ocean Optics  7268
## 6                   Oceans  7268
## 7                completed  6452
## 8  ATMOSPHERIC WATER VAPOR  3142
## 9                   OCEANS  2765
## 10            LAND SURFACE  2720
## # ... with 1,764 more rows

看起来“已完成项目”对于某些目的来说可能不是有用的关键字,我们可能希望将所有这些都更改为小写或大写,以消除诸如“ OCEANS”和“ Oceans”之类的重复项。

nasakeyword <- nasakeyword %>% mutate(keyword = toupper(keyword))

计算文字的tf-idf

什么是tf-idf?评估文档中单词的重要性的一种方法可能是其  术语频率  (tf),即单词在文档中出现的频率。但是,一些经常出现的单词并不重要。在英语中,这些词可能是“ the”,“ is”,“ of”等词。另一种方法是查看术语的  逆文档频率  (idf),这会降低常用单词的权重,而增加在文档集中很少使用的单词的权重。

library(tidytext)
descwords <- nasadesc %>% unnest_tokens(word, desc) %>%
        count(id, word, sort = TRUE) %>%
        ungroup()
descwords

## # A tibble: 2,728,224 x 3
##                          id  word     n
##                       <chr> <chr> <int>
## 1  55942a88c63a7fe59b498280   amp   679
## 2  55942a88c63a7fe59b498280  nbsp   655
## 3  55942a8ec63a7fe59b4986ef    gt   330
## 4  55942a8ec63a7fe59b4986ef    lt   330
## 5  55942a8ec63a7fe59b4986ef     p   327
## 6  55942a8ec63a7fe59b4986ef   the   231
## 7  55942a86c63a7fe59b49803b   amp   208
## 8  55942a86c63a7fe59b49803b  nbsp   204
## 9  56cf5b00a759fdadc44e564a   the   201
## 10 55942a86c63a7fe59b4980a2    gt   191
## # ... with 2,728,214 more rows

这些是NASA说明字段中最常见的“单词”,是词频最高的单词。让我们看一下第一个数据集,例如:

nasadesc %>% filter(id == "55942a88c63a7fe59b498280") %>% select(desc)

## # A tibble: 1 x 1
##                                                                                                                                                     desc
##                                                                                                                                                    <chr>
## 1 &lt;p&gt;The objective of the Variable Oxygen Regulator Element is to develop an oxygen-rated, contaminant-tolerant oxygen regulator to control suit p

tf-idf算法应该减少所有这些的权重,因为它们很常见,但是我们可以根据需要通过停用词将其删除。现在,让我们为描述字段中的所有单词计算tf-idf。

descwords <- descwords %>% bind_tf_idf(word, id, n)
descwords

## # A tibble: 2,728,224 x 6
##                          id  word     n         tf       idf      tf_idf
##                       <chr> <chr> <int>      <dbl>     <dbl>       <dbl>
## 1  55942a88c63a7fe59b498280   amp   679 0.35661765 3.1810813 1.134429711
## 2  55942a88c63a7fe59b498280  nbsp   655 0.34401261 4.2066578 1.447143322
## 3  55942a8ec63a7fe59b4986ef    gt   330 0.05722213 3.2263517 0.184618705
## 4  55942a8ec63a7fe59b4986ef    lt   330 0.05722213 3.2903671 0.188281801
## 5  55942a8ec63a7fe59b4986ef     p   327 0.05670192 3.3741126 0.191318680
## 6  55942a8ec63a7fe59b4986ef   the   231 0.04005549 0.1485621 0.005950728
## 7  55942a86c63a7fe59b49803b   amp   208 0.32911392 3.1810813 1.046938133
## 8  55942a86c63a7fe59b49803b  nbsp   204 0.32278481 4.2066578 1.357845252
## 9  56cf5b00a759fdadc44e564a   the   201 0.06962245 0.1485621 0.010343258
## 10 55942a86c63a7fe59b4980a2    gt   191 0.12290862 3.2263517 0.396546449
## # ... with 2,728,214 more rows

添加的列是tf,idf,这两个数量相乘在一起是tf-idf,这是我们感兴趣的东西。NASA描述字段中最高的tf-idf词是什么?

descwords %>% arrange(-tf_idf)

## # A tibble: 2,728,224 x 6
##                          id                                          word     n    tf       idf
##                       <chr>                                         <chr> <int> <dbl>     <dbl>
## 1  55942a7cc63a7fe59b49774a                                           rdr     1     1 10.376269
## 2  55942ac9c63a7fe59b49b688 palsar_radiometric_terrain_corrected_high_res     1     1 10.376269
## 3  55942ac9c63a7fe59b49b689  palsar_radiometric_terrain_corrected_low_res     1     1 10.376269
## 4  55942a7bc63a7fe59b4976ca                                          lgrs     1     1  8.766831
## 5  55942a7bc63a7fe59b4976d2                                          lgrs     1     1  8.766831
## 6  55942a7bc63a7fe59b4976e3                                          lgrs     1     1  8.766831
## 7  55942ad8c63a7fe59b49cf6c                      template_proddescription     1     1  8.296827
## 8  55942ad8c63a7fe59b49cf6d                      template_proddescription     1     1  8.296827
## 9  55942ad8c63a7fe59b49cf6e                      template_proddescription     1     1  8.296827
## 10 55942ad8c63a7fe59b49cf6f                      template_proddescription     1     1  8.296827
##       tf_idf
##        <dbl>
## 1  10.376269
## 2  10.376269
## 3  10.376269
## 4   8.766831
## 5   8.766831
## 6   8.766831
## 7   8.296827
## 8   8.296827
## 9   8.296827
## 10  8.296827
## # ... with 2,728,214 more rows

因此,这些是用tf-idf衡量的描述字段中最“重要”的词,这意味着它们很常见,但不太常用。

nasadesc %>% filter(id == "55942a7cc63a7fe59b49774a") %>% select(desc)

## # A tibble: 1 x 1
##    desc
##   <chr>
## 1   RDR

tf-idf算法将认为这是一个非常重要的词。

连接关键字和描述

因此,现在我们知道描述中的哪个词具有较高的tf-idf,并且在关键字中也有这些描述的标签。

descwords <- full_join(descwords, nasakeyword, by = "id")
descwords

## # A tibble: 11,013,838 x 7
##                          id  word     n         tf      idf    tf_idf              keyword
##                       <chr> <chr> <int>      <dbl>    <dbl>     <dbl>                <chr>
## 1  55942a88c63a7fe59b498280   amp   679 0.35661765 3.181081 1.1344297              ELEMENT
## 2  55942a88c63a7fe59b498280   amp   679 0.35661765 3.181081 1.1344297 JOHNSON SPACE CENTER
## 3  55942a88c63a7fe59b498280   amp   679 0.35661765 3.181081 1.1344297                  VOR
## 4  55942a88c63a7fe59b498280   amp   679 0.35661765 3.181081 1.1344297               ACTIVE
## 5  55942a88c63a7fe59b498280  nbsp   655 0.34401261 4.206658 1.4471433              ELEMENT
## 6  55942a88c63a7fe59b498280  nbsp   655 0.34401261 4.206658 1.4471433 JOHNSON SPACE CENTER
## 7  55942a88c63a7fe59b498280  nbsp   655 0.34401261 4.206658 1.4471433                  VOR
## 8  55942a88c63a7fe59b498280  nbsp   655 0.34401261 4.206658 1.4471433               ACTIVE
## 9  55942a8ec63a7fe59b4986ef    gt   330 0.05722213 3.226352 0.1846187 JOHNSON SPACE CENTER
## 10 55942a8ec63a7fe59b4986ef    gt   330 0.05722213 3.226352 0.1846187              PROJECT
## # ... with 11,013,828 more rows

可视化结果

让我们来看几个示例关键字中最重要的单词。

plot_words <- descwords %>% filter(!near(tf, 1)) %>%
        filter(keyword %in% c("SOLAR ACTIVITY", "CLOUDS",
                              "VEGETATION", "ASTROPHYSICS",
                              "HUMAN HEALTH", "BUDGET")) %>%
        arrange(desc(tf_idf)) %>%
        group_by(keyword) %>%
        distinct(word, keyword, .keep_all = TRUE) %>%
        top_n(20, tf_idf) %>% ungroup() %>%
        mutate(word = factor(word, levels = rev(unique(word))))
plot_words

## # A tibble: 122 x 7
##                          id      word     n        tf      idf   tf_idf    keyword
##                       <chr>    <fctr> <int>     <dbl>    <dbl>    <dbl>      <chr>
## 1  55942a60c63a7fe59b49612f estimates     1 0.5000000 3.172863 1.586432     CLOUDS
## 2  55942a76c63a7fe59b49728d      ncdc     1 0.1666667 7.603680 1.267280     CLOUDS
## 3  55942a60c63a7fe59b49612f     cloud     1 0.5000000 2.464212 1.232106     CLOUDS
## 4  55942a5ac63a7fe59b495bd8      fife     1 0.2000000 5.910360 1.182072     CLOUDS
## 5  55942a5cc63a7fe59b495deb allometry     1 0.1428571 7.891362 1.127337 VEGETATION
## 6  55942a5dc63a7fe59b495ede       tgb     3 0.1875000 5.945452 1.114772 VEGETATION
## 7  55942a5ac63a7fe59b495bd8      tovs     1 0.2000000 5.524238 1.104848     CLOUDS
## 8  55942a5ac63a7fe59b495bd8  received     1 0.2000000 5.332843 1.066569     CLOUDS
## 9  55942a5cc63a7fe59b495dfd       sap     1 0.1250000 8.430358 1.053795 VEGETATION
## 10 55942a60c63a7fe59b496131  abstract     1 0.3333333 3.118561 1.039520     CLOUDS
## # ... with 112 more rows

nasadesc %>% filter(id == "55942a60c63a7fe59b49612f") %>% select(desc)

## # A tibble: 1 x 1
##              desc
##             <chr>
## 1 Cloud estimates

tf-idf算法在仅2个字长的描述中无法很好地工作,或者至少它将对这些字进行非常重的加权。实际上,也许这是不合适的。

library(ggplot2)
library(ggstance)
library(ggthemes)
ggplot(plot_words, aes(tf_idf, word, fill = keyword, alpha = tf_idf)) +
        geom_barh(stat = "identity", show.legend = FALSE) +
        labs(title = "Highest tf-idf words in NASA Metadata Description Fields",
             subtitle = "Distribution of tf-idf for words from datasets labeled with various keywords",
             caption = "NASA metadata from https://data.nasa.gov/data.json",
             y = NULL, x = "tf-idf") +
        facet_wrap(~keyword, ncol = 3, scales = "free") +
        theme_tufte(base_family = "Arial", base_size = 13, ticks = FALSE) +
        scale_alpha_continuous(range = c(0.2, 1)) +
        scale_x_continuous(expand=c(0,0)) +
        theme(strip.text=element_text(hjust=0)) +
        theme(plot.caption=element_text(size=9))

?

原文地址:https://www.cnblogs.com/tecdat/p/12036496.html

时间: 2024-10-14 17:27:57

NASA Metadata: tf-idf of Description Texts and Keywords的相关文章

[Elasticsearch] 控制相关度 (四) - 忽略TF/IDF

本章翻译自Elasticsearch官方指南的Controlling Relevance一章. 忽略TF/IDF 有时我们不需要TF/IDF.我们想知道的只是一个特定的单词是否出现在了字段中.比如我们正在搜索度假酒店,希望它拥有的卖点越多越好: WiFi 花园(Garden) 泳池(Pool) 而关于度假酒店的文档类似下面这样: { "description": "A delightful four-bedroomed house with ... " } 可以使用

tf–idf算法解释及其python代码实现(下)

tf–idf算法python代码实现 这是我写的一个tf-idf的核心部分的代码,没有完整实现,当然剩下的事情就非常简单了,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四句话,每句表示一个文档 copus=['我正在学习计算机','它正在吃饭','我的书还在你那儿','今天不上班'] 由于中文需要分词,jieba分词是python里面比较好用的分词工具,所以选用jieba分词,文末是jieba的链接.首先对文档进行分词: i

tf–idf算法解释及其python代码实现(上)

tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息检索和文本挖掘中. 一个很自然的想法是在一篇文档中词频越高的词对这篇文档越重要,但同时如果这个词又在非常多的文档中出现的话可能就是很普通的词,没有多少信息,对所在文档贡献不大,例如‘的’这种停用词.所以要综合一个词在所在文档出现次数以及有多少篇文档包含这个词,如果一个词在所在文档出现次数很多同时整个

关于使用Filter减少Lucene tf idf打分计算的调研

将query改成filter,lucene中有个QueryWrapperFilter性能比较差,所以基本上都需要自己写filter,包括TermFilter,ExactPhraseFilter,ConjunctionFilter,DisjunctionFilter. 这几天验证下来,还是or改善最明显,4个termfilter,4508个返回结果,在我本机上性能提高1/3.ExactPhraseFilter也有小幅提升(5%-10%). 最令人不解的是and,原来以为跟结果数和子查询数相关,但几

Elasticsearch学习之相关度评分TF&amp;IDF

relevance score算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度 Elasticsearch使用的是 term frequency/inverse document frequency算法,简称为TF/IDF算法 Term frequency(TF):搜索文本中的各个词条在field文本中出现了多少次,出现次数越多,就越相关 Inverse document frequency(IDF):搜索文本中的各个词条在整个索引的所有文档中出现了多少次,出现的

使用solr的函数查询,并获取tf*idf值

1. 使用函数df(field,keyword) 和idf(field,keyword). http://118.85.207.11:11100/solr/mobile/select?q={!func}product%28idf%28title,%E9%97%AE%E9%A2%98%29,tf%28title,%E9%97%AE%E9%A2%98%29%29&fl=title,score,product%28idf%28title,%E9%97%AE%E9%A2%98%29,tf%28title

55.TF/IDF算法

主要知识点: TF/IDF算法介绍 查看es计算_source的过程及各词条的分数 查看一个document是如何被匹配到的 一.算法介绍 relevance score算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度.Elasticsearch使用的是 term frequency/inverse document frequency算法,简称为TF/IDF算法 1.Term frequency 搜索文本中的各个词条在field文本中出现了多少次,出现次数越多,

25.TF&IDF算法以及向量空间模型算法

主要知识点: boolean model IF/IDF vector space model 一.boolean model 在es做各种搜索进行打分排序时,会先用boolean model 进行初步的筛选,boolean model类似and这种逻辑操作符,先过滤出包含指定term的doc.must/must not/should(过滤.包含.不包含 .可能包含)这几种情况,这一步不会对各个doc进行打分,只分过滤,为下一步的IF/IDF算法筛选数据. 二.TF/IDF 这一步就是es为boo

文本分类学习(三) 特征权重(TF/IDF)和特征提取

上一篇中,主要说的就是词袋模型.回顾一下,在进行文本分类之前,我们需要把待分类文本先用词袋模型进行文本表示.首先是将训练集中的所有单词经过去停用词之后组合成一个词袋,或者叫做字典,实际上一个维度很大的向量.这样每个文本在分词之后,就可以根据我们之前得到的词袋,构造成一个向量,词袋中有多少个词,那这个向量就是多少维度的了.然后就把这些向量交给计算机去计算,而不再需要文本啦.而向量中的数字表示的是每个词所代表的权重.代表这个词对文本类型的影响程度. 在这个过程中我们需要解决两个问题:1.如何计算出适