爬虫学习 06.Python网络爬虫之requests模块(2)

爬虫学习 06.Python网络爬虫之requests模块(2)

今日内容

  • session处理cookie
  • proxies参数设置请求代理ip
  • 基于线程池的数据爬取

知识点回顾

  • xpath的解析流程
  • bs4的解析流程
  • 常用xpath表达式
  • 常用bs4解析方法

了解cookie和session

- 无状态的http协议

  • 如上图所示,HTTP协议 是无状态的协议,用户浏览服务器上的内容,只需要发送页面请求,服务器返回内容。对于服务器来说,并不关心,也并不知道是哪个用户的请求。对于一般浏览性的网页来说,没有任何问题。
  • 但是,现在很多的网站,是需要用户登录的。以淘宝为例:比如说某个用户想购买一个产品,当点击 “ 购买按钮 ” 时,由于HTTP协议 是无状态的,那对于淘宝来说,就不知道是哪个用户操作的。
  • 为了实现这种用户标记,服务器就采用了cookie这种机制来识别具体是哪一个用户的访问。

了解Cookie

- 如图,为了实现用户标记,在Http无状态请求的基础之上,我们需要在请求中携带一些用户信息(比如用户名之类,这些信息是服务器发送到本地浏览器的,但是服务器并不存储这些信息),这就是cookie机制。

- 需要注意的是:cookie信息是保存在本地浏览器里面的,服务器上并不存储相关的信息。 在发送请求时,cookie的这些内容是放在 Http协议中的header 字段中进行传输的。

- 几乎现在所有的网站都会发送一些 cookie信息过来,当用户请求中携带了cookie信息,服务器就可以知道是哪个用户的访问了,从而不需要再使用账户和密码登录。

- 但是,刚才也提到了,cookie信息是直接放在Http协议的header中进行传输的,看得出来,这是个隐患!一旦别人获取到你的cookie信息(截获请求,或者使用你的电脑),那么他很容易从cookie中分析出你的用户名和密码。为了解决这个隐患,所以有了session机制。

了解session

- 刚才提到了cookie不安全,所以有了session机制。简单来说(每个框架都不一样,这只是举一个通用的实现策略),整过过程是这样:

  • 服务器根据用户名和密码,生成一个session ID,存储到服务器的数据库中。
  • 用户登录访问时,服务器会将对应的session ID发送给用户(本地浏览器)。
  • 浏览器会将这个session ID存储到cookie中,作为一个键值项。
  • 以后,浏览器每次请求,就会将含有session ID的cookie信息,一起发送给服务器。
  • 服务器收到请求之后,通过cookie中的session ID,到数据库中去查询,解析出对应的用户名,就知道是哪个用户的请求了。

总结

- cookie 在客户端(本地浏览器),session 在服务器端。cookie是一种浏览器本地存储机制。存储在本地浏览器中,和服务器没有关系。每次请求,用户会带上本地cookie的信息。这些cookie信息也是服务器之前发送给浏览器的,或者是用户之前填写的一些信息。

- Cookie有不安全机制。 你不能把所有的用户信息都存在本地,一旦被别人窃取,就知道你的用户名和密码,就会很危险。所以引入了session机制。

- 服务器在发送id时引入了一种session的机制,很简单,就是根据用户名和密码,生成了一段随机的字符串,这段字符串是有过期时间的。

*- 一定要注意:session是服务器生成的,存储在服务器的数据库或者文件中,然后把sessionID发送给用户,用户存储在本地cookie中。每次请求时,把这个session ID带给服务器,服务器根据session ID到数据库中去查询,找到是哪个用户,就可以对用户进行标记了。

*- session 的运行依赖 session ID,而 session ID 是存在 cookie 中的,也就是说,如果浏览器禁用了 cookie ,那么同时 session 也会失效(但是可以通过其它方式实现,比如在url中传递 session ID)

*- 用户验证这种场合一般会用 session。 因此,维持一个会话的核心就是客户端的唯一标识,即session ID

引入

有些时候,我们在使用爬虫程序去爬取一些用户相关信息的数据(爬取张三“人人网”个人主页数据)时,如果使用之前requests模块常规操作时,往往达不到我们想要的目的,例如:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import requests
if __name__ == "__main__":

    #张三人人网个人信息页面的url
    url = 'http://www.renren.com/289676607/profile'

   #伪装UA
    headers={
        'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36',
    }
    #发送请求,获取响应对象
    response = requests.get(url=url,headers=headers)
    #将响应内容写入文件
    with open('./renren.html','w',encoding='utf-8') as fp:
        fp.write(response.text)

一.基于requests模块的cookie操作

- 结果发现,写入到文件中的数据,不是张三个人页面的数据,而是人人网登陆的首页面,why?首先我们来回顾下cookie的相关概念及作用:

  • cookie概念:当用户通过浏览器首次访问一个域名时,访问的web服务器会给客户端发送数据,以保持web服务器与客户端之间的状态保持,这些数据就是cookie。

    • cookie作用:我们在浏览器中,经常涉及到数据的交换,比如你登录邮箱,登录一个页面。我们经常会在此时设置30天内记住我,或者自动登录选项。那么它们是怎么记录信息的呢,答案就是今天的主角cookie了,Cookie是由HTTP服务器设置的,保存在浏览器中,但HTTP协议是一种无状态协议,在数据交换完毕后,服务器端和客户端的链接就会关闭,每次交换数据都需要建立新的链接。就像我们去超市买东西,没有积分卡的情况下,我们买完东西之后,超市没有我们的任何消费信息,但我们办了积分卡之后,超市就有了我们的消费信息。cookie就像是积分卡,可以保存积分,商品就是我们的信息,超市的系统就像服务器后台,http协议就是交易的过程。

- 经过cookie的相关介绍,其实你已经知道了为什么上述案例中爬取到的不是张三个人信息页,而是登录页面。那应该如何抓取到张三的个人信息页呢?

  思路:

    1.我们需要使用爬虫程序对人人网的登录时的请求进行一次抓取,获取请求中的cookie数据

    2.在使用个人信息页的url进行请求时,该请求需要携带 1 中的cookie,只有携带了cookie后,服务器才可识别这次请求的用户信息,方可响应回指定的用户信息页数据

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import requests
if __name__ == "__main__":

    #登录请求的url(通过抓包工具获取)
    post_url = 'http://www.renren.com/ajaxLogin/login?1=1&uniqueTimestamp=201873958471'
    #创建一个session对象,该对象会自动将请求中的cookie进行存储和携带
    session = requests.session()
   #伪装UA
    headers={
        'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36',
    }
    formdata = {
        'email': '17701256561',
        'icode': '',
        'origURL': 'http://www.renren.com/home',
        'domain': 'renren.com',
        'key_id': '1',
        'captcha_type': 'web_login',
        'password': '7b456e6c3eb6615b2e122a2942ef3845da1f91e3de075179079a3b84952508e4',
        'rkey': '44fd96c219c593f3c9612360c80310a3',
        'f': 'https%3A%2F%2Fwww.baidu.com%2Flink%3Furl%3Dm7m_NSUp5Ri_ZrK5eNIpn_dMs48UAcvT-N_kmysWgYW%26wd%3D%26eqid%3Dba95daf5000065ce000000035b120219',
    }
    #使用session发送请求,目的是为了将session保存该次请求中的cookie
    session.post(url=post_url,data=formdata,headers=headers)

    get_url = 'http://www.renren.com/960481378/profile'
    #再次使用session进行请求的发送,该次请求中已经携带了cookie
    response = session.get(url=get_url,headers=headers)
    #设置响应内容的编码格式
    response.encoding = 'utf-8'
    #将响应内容写入文件
    with open('./renren.html','w') as fp:
        fp.write(response.text)

二.基于requests模块的代理操作

  • 什么是代理

    • 代理就是第三方代替本体处理相关事务。例如:生活中的代理:代购,中介,微商......
  • 爬虫中为什么需要使用代理
    • 一些网站会有相应的反爬虫措施,例如很多网站会检测某一段时间某个IP的访问次数,如果访问频率太快以至于看起来不像正常访客,它可能就会会禁止这个IP的访问。所以我们需要设置一些代理IP,每隔一段时间换一个代理IP,就算IP被禁止,依然可以换个IP继续爬取。
  • 代理的分类:
    • 正向代理:代理客户端获取数据。正向代理是为了保护客户端防止被追究责任。
    • 反向代理:代理服务器提供数据。反向代理是为了保护服务器或负责负载均衡。
  • 免费代理ip提供网站
    • http://www.goubanjia.com/
    • 西祠代理
    • 快代理
  • 代码
    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    import requests
    import random
    if __name__ == "__main__":
        #不同浏览器的UA
        header_list = [
            # 遨游
            {"user-agent": "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Maxthon 2.0)"},
            # 火狐
            {"user-agent": "Mozilla/5.0 (Windows NT 6.1; rv:2.0.1) Gecko/20100101 Firefox/4.0.1"},
            # 谷歌
            {
                "user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_0) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11"}
        ]
        #不同的代理IP
        proxy_list = [
            {"http": "112.115.57.20:3128"},
            {'http': '121.41.171.223:3128'}
        ]
        #随机获取UA和代理IP
        header = random.choice(header_list)
        proxy = random.choice(proxy_list)
    
        url = 'http://www.baidu.com/s?ie=UTF-8&wd=ip'
        #参数3:设置代理
        response = requests.get(url=url,headers=header,proxies=proxy)
        response.encoding = 'utf-8'
    
        with open('daili.html', 'wb') as fp:
            fp.write(response.content)
        #切换成原来的IP
        requests.get(url, proxies={"http": ""})

三.基于multiprocessing.dummy线程池的数据爬取

  • 需求:爬取梨视频的视频信息,并计算其爬取数据的耗时

    • 普通爬取

      %%time
      import requests
      import random
      from lxml import etree
      import re
      from fake_useragent import UserAgent
      #安装fake-useragent库:pip install fake-useragent
      url = 'http://www.pearvideo.com/category_1'
      #随机产生UA,如果报错则可以添加如下参数:
      #ua = UserAgent(verify_ssl=False,use_cache_server=False).random
      #禁用服务器缓存:
      #ua = UserAgent(use_cache_server=False)
      #不缓存数据:
      #ua = UserAgent(cache=False)
      #忽略ssl验证:
      #ua = UserAgent(verify_ssl=False)
      
      ua = UserAgent().random
      headers = {
          'User-Agent':ua
      }
      #获取首页页面数据
      page_text = requests.get(url=url,headers=headers).text
      #对获取的首页页面数据中的相关视频详情链接进行解析
      tree = etree.HTML(page_text)
      li_list = tree.xpath('//div[@id="listvideoList"]/ul/li')
      detail_urls = []
      for li in li_list:
          detail_url = 'http://www.pearvideo.com/'+li.xpath('./div/a/@href')[0]
          title = li.xpath('.//div[@class="vervideo-title"]/text()')[0]
          detail_urls.append(detail_url)
      for url in detail_urls:
          page_text = requests.get(url=url,headers=headers).text
          vedio_url = re.findall('srcUrl="(.*?)"',page_text,re.S)[0]
      
          data = requests.get(url=vedio_url,headers=headers).content
          fileName = str(random.randint(1,10000))+'.mp4' #随机生成视频文件名称
          with open(fileName,'wb') as fp:
              fp.write(data)
              print(fileName+' is over')

    • 基于线程池的爬取
      %%time
      import requests
      import random
      from lxml import etree
      import re
      from fake_useragent import UserAgent
      #安装fake-useragent库:pip install fake-useragent
      #导入线程池模块
      from multiprocessing.dummy import Pool
      #实例化线程池对象
      pool = Pool()
      url = 'http://www.pearvideo.com/category_1'
      #随机产生UA
      ua = UserAgent().random
      headers = {
          'User-Agent':ua
      }
      #获取首页页面数据
      page_text = requests.get(url=url,headers=headers).text
      #对获取的首页页面数据中的相关视频详情链接进行解析
      tree = etree.HTML(page_text)
      li_list = tree.xpath('//div[@id="listvideoList"]/ul/li')
      
      detail_urls = []#存储二级页面的url
      for li in li_list:
          detail_url = 'http://www.pearvideo.com/'+li.xpath('./div/a/@href')[0]
          title = li.xpath('.//div[@class="vervideo-title"]/text()')[0]
          detail_urls.append(detail_url)
      
      vedio_urls = []#存储视频的url
      for url in detail_urls:
          page_text = requests.get(url=url,headers=headers).text
          vedio_url = re.findall('srcUrl="(.*?)"',page_text,re.S)[0]
          vedio_urls.append(vedio_url)
      #使用线程池进行视频数据下载
      func_request = lambda link:requests.get(url=link,headers=headers).content
      video_data_list = pool.map(func_request,vedio_urls)
      #使用线程池进行视频数据保存
      func_saveData = lambda data:save(data)
      pool.map(func_saveData,video_data_list)
      def save(data):
          fileName = str(random.randint(1,10000))+'.mp4'
          with open(fileName,'wb') as fp:
              fp.write(data)
              print(fileName+'已存储')
      
      pool.close()
      pool.join()

原文地址:https://www.cnblogs.com/bky20061005/p/12172937.html

时间: 2024-10-14 18:32:29

爬虫学习 06.Python网络爬虫之requests模块(2)的相关文章

爬虫学习 04.Python网络爬虫之requests模块(1)

爬虫学习 04.Python网络爬虫之requests模块(1) 引入 Requests 唯一的一个非转基因的 Python HTTP 库,人类可以安全享用. 警告:非专业使用其他 HTTP 库会导致危险的副作用,包括:安全缺陷症.冗余代码症.重新发明轮子症.啃文档症.抑郁.头疼.甚至死亡. 今日概要 基于requests的get请求 基于requests模块的post请求 基于requests模块ajax的get请求 基于requests模块ajax的post请求 综合项目练习:爬取国家药品监

爬虫学习 05.Python网络爬虫之三种数据解析方式

爬虫学习 05.Python网络爬虫之三种数据解析方式 引入 回顾requests实现数据爬取的流程 指定url 基于requests模块发起请求 获取响应对象中的数据 进行持久化存储 其实,在上述流程中还需要较为重要的一步,就是在持久化存储之前需要进行指定数据解析.因为大多数情况下的需求,我们都会指定去使用聚焦爬虫,也就是爬取页面中指定部分的数据值,而不是整个页面的数据.因此,本次课程中会给大家详细介绍讲解三种聚焦爬虫中的数据解析方式.至此,我们的数据爬取的流程可以修改为: 指定url 基于r

爬虫学习 08.Python网络爬虫之图片懒加载技术、selenium和PhantomJS

爬虫学习 08.Python网络爬虫之图片懒加载技术.selenium和PhantomJS 引入 今日概要 图片懒加载 selenium phantomJs 谷歌无头浏览器 知识点回顾 验证码处理流程 今日详情 动态数据加载处理 一.图片懒加载 什么是图片懒加载? 案例分析:抓取站长素材http://sc.chinaz.com/中的图片数据 #!/usr/bin/env python # -*- coding:utf-8 -*- import requests from lxml import

爬虫学习 16.Python网络爬虫之Scrapy框架(CrawlSpider)

爬虫学习 16.Python网络爬虫之Scrapy框架(CrawlSpider) 引入 提问:如果想要通过爬虫程序去爬取"糗百"全站数据新闻数据的话,有几种实现方法? 方法一:基于Scrapy框架中的Spider的递归爬取进行实现(Request模块递归回调parse方法). 方法二:基于CrawlSpider的自动爬取进行实现(更加简洁和高效). 今日概要 CrawlSpider简介 CrawlSpider使用 基于CrawlSpider爬虫文件的创建 链接提取器 规则解析器 今日详

python学习笔记-day8-3-【python 网络请求及requests模块】

python的网络请求,主要是进行Http协议类接口调用,进行接口测试等. 一.urllib库,python内嵌的库,不太好用. from urllib import request,parse import json # url = 'http://baidu.com' # req = request.urlopen(url) #打开一个url # content = req.read().decode() # fw = open('nnzhp.html', 'w', encoding='ut

python网络编程,requests模块

可以使用python自带的urllib模块去请求一个网站,或者接口,但是urllib模块太麻烦了,传参数的话,都得是bytes类型,返回数据也是bytes类型,还得解码,想直接把返回结果拿出来使用的话,还得用json,发get请求和post请求,也不通,使用比较麻烦,还有一个比较方便的模块,比urllib模块方便很多,就是requests模块,它使用比较方便,需要安装,pip install requests即可,下面是requests模块的实例 import requests pay_url 

Python网络爬虫使用总结

网络爬虫使用总结:requests–bs4–re技术路线 简要的抓取使用本技术路线就能轻松应对.参见:Python网络爬虫学习笔记(定向) 网络爬虫使用总结:scrapy(5+2结构) 使用步骤: 第一步:创建工程: 第二步:编写Spider: 第二步:编写Item Pipeline: 第四步:优化配置策略: 工程路径: 网络爬虫使用总结:展望(PhantomJS) 如上所有的两条记录路线仅仅是对网页的处理,只能爬取单纯的html代码.就需要引出"PhantomJS",PhantomJ

python网络爬虫学习资料

第一:Python爬虫学习系列教程(来源于某博主:http://cuiqingcai.com/1052.html) Python版本:2.7 整体目录: 一.爬虫入门 1. Python爬虫入门一之综述 2. Python爬虫入门二之爬虫基础了解 3. Python爬虫入门三之Urllib库的基本使用 4. Python爬虫入门四之Urllib库的高级用法 5. Python爬虫入门五之URLError异常处理 6. Python爬虫入门六之Cookie的使用 7. Python爬虫入门七之正则

Python网络爬虫基础知识学习

对Python有一些简单了解的朋友都知识Python编程语言有个很强大的功能,那就是Python网络爬虫(http://www.maiziedu.com/course/python/645-9570/),一提到Python,就会想到相关的Python爬虫和scrapy等等,今天就来简单认识学习Python爬虫的基础知识,有了一定的相关爬虫知识,以后学习scrapy.urllib等等知识时,会相对轻松些. 爬虫: 网络爬虫是一个自动提取网页的程序,它为搜索引擎从万维网上下载网页,是搜索引擎的重要组