pandas.DataFrame的groupby()方法的基本使用

pandas.DataFrame的groupby()方法是一个特别常用和有用的方法。让我们快速掌握groupby()方法的基础使用,从此数据分析又多一法宝。

首先导入package:

import pandas as pd
import numpy as np

groupby的最基本操作

df = pd.DataFrame({‘A‘:[1,2,3,1],‘B‘:[2,3,3,6],‘C‘:[3,1,5,7]})
df

按照A列来进行分组(其实说白了就是将A列中重复的值和成同一个值,然后把A当成索引来进行重新的数据分组)

df.groupby(‘A‘).mean() #mean是取平均值

df.groupby(‘A‘).sum() #sum是求和

df.groupby([‘A‘]).first() #取第一个出现的数据

df.groupby([‘A‘]).last() #取最后一个出现的数据

也可以按照多组进行分组

df.groupby([‘A‘,‘B‘]).sum()

统计数据的数量

size跟count的区别: size计数时包含NaN值,而count不包含NaN值

df = pd.DataFrame({‘A‘:[1,2,3,1],‘B‘:[2,3,3,6],‘C‘:[3,np.nan,5,7]})
df

df.groupby([‘A‘]).count()

df.groupby([‘A‘]).size()

原文地址:https://www.cnblogs.com/nsw0419/p/11620904.html

时间: 2024-10-01 01:33:54

pandas.DataFrame的groupby()方法的基本使用的相关文章

pandas.DataFrame学习系列2——函数方法(1)

DataFrame类具有很多方法,下面做用法的介绍和举例. pandas.DataFrame学习系列2--函数方法(1) 1.abs(),返回DataFrame每个数值的绝对值,前提是所有元素均为数值型 1 import pandas as pd 2 import numpy as np 3 4 df=pd.read_excel('南京银行.xlsx',index_col='Date') 5 df1=df[:5] 6 df1.iat[0,1]=-df1.iat[0,1] 7 df1 8 Open

python pandas dataframe 去重函数

今天笔者想对pandas中的行进行去重操作,找了好久,才找打相关的函数 先看一个小例子 <span style="font-size:18px;">from pandas import Series, DataFrame data = DataFrame({'k': [1, 1, 2, 2]}) print data IsDuplicated = data.duplicated() print IsDuplicated print type(IsDuplicated) da

Pandas DataFrame 函数应用和映射

apply Numpy 的ufuncs通用函数(元素级数组方法)也可用于操作pandas对象: 另一个常见的操作是,将函数应用到由各列或行所形成的一维数组上.Dataframe的apply方法即可实现此功能: sum 和mean 许多最为常见的数组统计功能都被实现成DataFrame的方法(如sum和mean), 因此无需使用apply方法. 除标量外, 传递给apply的函数还可以返回由多个值组成的Series: 元素级 python函数也可以用,格式化浮点值, applymap方法 之所以叫

pandas中pd.read_excel()方法中的converters参数

最近用pandas的pd.read_excel()方法读取excel文件时,遇到某一列的数据前面包含0(如010101)的时候,pd.read_excel()方法返回的DataFrame会将这一列视为int类型,即010101变成10101. 这种情况下,如果想要保持数据的完整性,可以以str类型来读取这一列,具体的实现如下: 1 df = pd.read_excel ("test.xlsx" , converters={'类别编码':str}) 如上代码,即可将"test.

pandas.DataFrame学习系列1——定义及属性

定义: DataFrame是二维的.大小可变的.成分混合的.具有标签化坐标轴(行和列)的表数据结构.基于行和列标签进行计算.可以被看作是为序列对象(Series)提供的类似字典的一个容器,是pandas中主要的数据结构. 形式: class pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False) 参数含义: data : numpy ndarray(多维数组)(结构化或同质化的), dict(字典

pandas DataFrame(1)

之前介绍了numpy的二维数组,但是numpy二维数组有一些局限性,比如,它数组里所有的值的类型必须相同,不能某一列是数值型,某一列是字符串型,这样会导致无法使用 mean() , std() 等方法去计算某一行或某一列. 但是,使用pandas DataFrame可以解决这一问题. pandas DataFrame也是二维数据,和pandas Series一样, pandas DataFrame也有'索引'这个概念,它每一列都有一个索引值: import pandas as pd df = p

pandas DataFrame(3)-轴

和numpy数组(5)-二维数组的轴一样,pandas DataFrame也有轴的概念,决定了方法是对行应用还是对列应用: 以下面这个数据为例说明: 这个数据是5个车站10天内的客流数据: ridership_df = pd.DataFrame( data=[[ 0, 0, 2, 5, 0], [1478, 3877, 3674, 2328, 2539], [1613, 4088, 3991, 6461, 2691], [1560, 3392, 3826, 4787, 2613], [1608,

pandas DataFrame apply()函数(1)

之前已经写过pandas DataFrame applymap()函数 还有pandas数组(pandas Series)-(5)apply方法自定义函数 pandas DataFrame 的 applymap() 函数和pandas Series 的 apply() 方法,都是对整个对象上个各个值进行单独处理,返回一个新的对象. 而pandas DataFrame 的  apply() 函数,虽然也是作用于DataFrame的每个值,但是接受的参数不是各个值本身,而是DataFrame里各行(

[python][pandas]DataFrame的基本操作

问题来源 在实验中经常需要将数据保存到易于查看的文件当中,由于大部分都是vector数据,所以选择pandas的dataframe来保存到csv文件是最简单的方法. 基本操作 下图是DataFrame的一些基本概念,可以看出与基本的csv结构是保持一致的. 1. 创建DataFrame 创建DataFrame通常有两种方法,从list中创建和从dict中创建: 从dict创建,key的名字会作为名,如下所示: >>> d = {'col1': [1, 2], 'col2': [3, 4]