机器学习——贝叶斯算法

目录:

  朴素贝叶斯

  贝叶斯网络

朴素贝叶斯

  特征属性之间没有关联关系,相互独立的,在此基础上应用贝叶斯定理。

 文本数据分类知识

  

原文地址:https://www.cnblogs.com/qianchaomoon/p/12144503.html

时间: 2024-10-11 06:31:45

机器学习——贝叶斯算法的相关文章

机器学习-贝叶斯算法

0. 前言 这是一篇关于贝叶斯方法的科普文,我会尽量少用公式,多用平白的语言叙述,多举实际例子.更严格的公式和计算我会在相应的地方注明参考资料.贝叶斯方法被证明是非常 general 且强大的推理框架,文中你会看到很多有趣的应用. 1. 历史 托马斯·贝叶斯(Thomas Bayes)同学的详细生平在这里.以下摘一段 wikipedia 上的简介: 所谓的贝叶斯方法源于他生前为解决一个"逆概"问题写的一篇文章,而这篇文章是在他死后才由他的一位朋友发表出来的.在贝叶斯写这篇文章之前,人们

Stanford机器学习[第六讲]-朴素贝叶斯算法

引文:由于之前讲过了朴素贝叶斯的理论Stanford机器学习[第五讲]-生成学习算法第四部分,同时朴素贝叶斯的算法实现也讲过了,见机器学习算法-朴素贝叶斯Python实现.那么这节课打算讲解一下朴素贝叶斯算法的具体计算流程,通过一个具体的实例来讲解. PS:为了专注于某一个细节,本章节只抽取了视频的一部分来讲解,只讲解一个贝叶斯算法的计算流程,关于视频里面的具体内容请参考下面的视频链接. 讲解的实例是一个文本分类的例子,区分一句话是粗鲁的还是文明的,类别标签只有Yes或No,表示是粗鲁的和不是粗

通俗易懂机器学习——朴素贝叶斯算法

本文将叙述朴素贝叶斯算法的来龙去脉,从数学推导到计算演练到编程实战 文章内容有借鉴网络资料.李航<统计学习方法>.吴军<数学之美>加以整理及补充 基础知识补充: 1.贝叶斯理论–吴军数学之美 http://mindhacks.cn/2008/09/21/the-magical-bayesian-method/ 2.条件概率 3.联合分布 朴素贝叶斯算法 朴素贝叶斯法是基于贝叶斯定理和特征条件独立假设的 分类方法.给定训练数据集,首先基于特征条件独立假设学习 输入/输出的联合概率分布

机器学习之朴素贝叶斯算法

1 贝叶斯定理的引入 概率论中的经典条件概率公式: 公式的理解为,P(X ,Y)= P(Y,X)<=> P(X | Y)P(Y)= P(Y | X)P (X),即 X 和 Y 同时发生的概率与 Y 和 X 同时发生的概率一样. 2 朴素贝叶斯定理 朴素贝叶斯的经典应用是对垃圾邮件的过滤,是对文本格式的数据进行处理,因此这里以此为背景讲解朴素贝叶斯定理.设D 是训练样本和相关联的类标号的集合,其中训练样本的属性集为          X { X1,X2, ... , Xn }, 共有n 个属性:

机器学习笔记-------贝叶斯算法1

Hello,我就是人见人爱,花见花开,蜜蜂见了会打转的小花..哈哈,我们终于讲到了当年大学让我头痛不已的贝叶斯.先给个模型: 一:贝叶斯定理 维基百科定义:贝叶斯定理(英语:Bayes' theorem)是概率论中的一个定理,它跟随机变量的条件概率以及边缘概率分布有关.在有些关于概率的解说中,贝叶斯定理(贝叶斯更新)能够告知我们如何利用新证据修改已有的看法.这个名称来自于托马斯·贝叶斯. 通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A的条件下的概率是不一样的:然而,这两者是有确定的

斯坦福《机器学习》Lesson5感想———2、朴素贝叶斯算法

朴素贝叶斯算法与上篇中写到到生成学习算法的思想是一致的.它不需要像线性回归等算法一样去拟合各种假设的可能,只需要计算各种假设的概率,然后选择概率最高的那种假设分类类别.其中还添入了一个贝叶斯假定:在给定目标值y时属性值x之间相互独立.这样的分类算法被称为朴素贝叶斯分类器(Naive Bayes classifier)  . 1.朴素贝叶斯算法 在朴素贝叶斯算法的模型里,给定的训练集为, 可计算,.因为贝叶斯假定,可以计算出联合似然概率函数: 最大化联合似然概率函数可得到: 然后我们就可以对新的数

机器学习之实战朴素贝叶斯算法

贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类,而朴素贝叶斯分类可谓是里面最简单.入门的一种. 首先关于贝叶斯定理,感觉简单而伟大,前些天一直在看吴军的数学之美(没看过的极力推荐)系列文章,看到自然语言处理从规则模型到统计模型转变的时候,语言的识别准确率上升好几个等级,以至于今天的语言识别到达很强大的地步,同时对于搜索引擎,网页搜索的准确率,也上升好多.这其中的最最重要的就是使用了贝叶斯准则,运用一种统计学的概念,将识别搜索的结果可能性最大化.由此我联想到当今的

机器学习回顾篇(5):朴素贝叶斯算法

1 引言 说到朴素贝叶斯算法,很自然地就会想到贝叶斯概率公式,这是我们在高中的时候就学过的只是,没错,这也真是朴素贝叶斯算法的核心,今天我们也从贝叶斯概率公式开始,全面撸一撸朴素贝叶斯算法. 2 贝叶斯概率公式 2.1 联合概率与全概率公式 定义1:完备事件组 ${A_1} \cup {A_2} \cup \cdots \cup {A_n} = \Omega $,且${A_i} \cap {A_j} = \emptyset ,1 \le i \ne j \le n$,则称${A_1},{A_2}

机器学习--朴素贝叶斯算法原理、方法及代码实现

一.朴素的贝叶斯算法原理 贝叶斯分类算法以样本可能属于某类的概率来作为分类依据,朴素贝叶斯分类算法是贝叶斯分类算法中最简单的一种,朴素的意思是条件概率独立性. 条件概率的三个重要公式: (1)概率乘法公式: P(AB)= P(B) P(A|B) = P(A) P(B|A) =P(BA) (2)全概率公式:        (3)贝叶斯公式:            如果一个事物在一些属性条件发生的情况下,事物属于A的概率>属于B的概率,则判定事物属于A,这就是朴素贝叶斯的基本思想. 二.算法步骤 (