吴裕雄--天生自然TensorFlow2教程:数据加载

import tensorflow as tf
from tensorflow import keras

# train: 60k | test: 10k
(x, y), (x_test, y_test) = keras.datasets.mnist.load_data()

x.shape
y.shape
# 0纯黑、255纯白
x.min(), x.max(), x.mean()
x_test.shape, y_test.shape
# 0-9有10种分类结果
y_onehot = tf.one_hot(y, depth=10)
y_onehot[:2]
# train: 50k | test: 10k
(x, y), (x_test, y_test) = keras.datasets.cifar10.load_data()
x.shape, y.shape, x_test.shape, y_test.shape
x.min(), x.max()
db = tf.data.Dataset.from_tensor_slices(x_test)
next(iter(db)).shape
db = tf.data.Dataset.from_tensor_slices((x_test, y_test))
next(iter(db))[0].shape
打乱数据
db = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db = db.shuffle(10000)
数据预处理
def preprocess(x, y):
    x = tf.cast(x, dtype=tf.float32) / 255.
    y = tf.cast(y, dtype=tf.int32)
    y = tf.one_hot(y, depth=10)
    return x, y
db2 = db.map(preprocess)
res = next(iter(db2))
res[0].shape, res[1].shape
一次性得到多张照片
db3 = db2.batch(32)
res = next(iter(db3))
res[0].shape, res[1].shape
db_iter = iter(db3)
while True:
    next(db_iter)
repeat()
# 迭代不退出
db4 = db3.repeat()
# 迭代两次退出
db3 = db3.repeat(2)
def prepare_mnist_features_and_labels(x, y):
    x = tf.cast(x, tf.float32) / 255.
    y = tf.cast(y, tf.int64)
    return x, y

def mnist_dataset():
    (x, y), (x_val, y_val) = datasets.fashion_mnist.load_data()
    y = tf.one_hot(y, depth=10)
    y_val = tf.one_hot(y_val, depth=10)

    ds = tf.data.Dataset.from_tensor_slices((x, y))
    ds = ds.map(prepare_mnist_features_and_labels)
    ds = ds.shffle(60000).batch(100)
    ds_val = tf.data.Dataset.from_tensor_slices((x_val, y_val))
    ds_val = ds_val.map(prepare_mnist_features_and_labels)
    ds_val = ds_val.shuffle(10000).batch(100)
    return ds, ds_val

原文地址:https://www.cnblogs.com/tszr/p/12141969.html

时间: 2024-10-09 19:33:20

吴裕雄--天生自然TensorFlow2教程:数据加载的相关文章

吴裕雄--天生自然TensorFlow2教程:Tensor数据类型

list: [1,1.2,'hello'] ,存储图片占用内存非常大 np.array,存成一个静态数组,但是numpy在深度学习之前就出现了,所以不适合深度学习 tf.Tensor,为了弥补numpy的缺点,更多的是为了深度学习而生 tensor数据存储类型 scalar:标量,1.1 vector:向量,[1.1],[1.1,2.2,...] matrix: 矩阵,[[1.1,2.2],[3.3,4.4]] tensor:rank>2 数据类型: Int, float, double boo

吴裕雄--天生自然TensorFlow2教程:numpy [ ] 索引

import tensorflow as tf a = tf.ones([1, 5, 5, 3]) a.shape a[0][0] numpy : 索引 a = tf.random.normal([4, 28, 28, 3]) a.shape a[1].shape a[1, 2].shape a[1][2][3].shape a[1, 2, 3, 2].shape 一维切片 a = tf.range(10) a a[-1:] a[-2:] a[:2] a[:-1] 多维切片 a = tf.ran

吴裕雄--天生自然TensorFlow2教程:数学运算

import tensorflow as tf b = tf.fill([2, 2], 2.) a = tf.ones([2, 2]) a+b a-b a*b a/b b // a b % a tf.math.log(a) # 只有以e为底的log tf.exp(a) tf.math.log(8.)/tf.math.log(2.) # 以2为底 tf.math.log(100.)/tf.math.log(10.) # 以10为底 tf.pow(b, 3) b**3 tf.sqrt(b) [ema

吴裕雄--天生自然TensorFlow2教程:Broadcasting

Broadcasting可以理解成把维度分成大维度和小维度,小维度较为具体,大维度更加抽象.也就是小维度针对某个示例,然后让这个示例通用语大维度. import tensorflow as tf x = tf.random.normal([4,32,32,3]) x.shape (x+tf.random.normal([3])).shape (x+tf.random.normal([32,32,1])).shape (x+tf.random.normal([4,1,1,1])).shape tr

吴裕雄--天生自然TensorFlow2教程:测试(张量)- 实战

import tensorflow as tf from tensorflow import keras from tensorflow.keras import datasets import os # do not print irrelevant information # os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # x: [60k,28,28], [10,28,28] # y: [60k], [10k] (x, y), (x_test, y_te

吴裕雄--天生自然 HADOOP大数据分布式处理:修改CenterOS 7 IP设置

原文地址:https://www.cnblogs.com/tszr/p/11062554.html

吴裕雄--天生自然 HADOOP大数据分布式处理:CenterOS 7 多台物理机、虚拟机相互桥连接ping通,并且能够成功连接外网

选择用于桥接模式下的虚拟交换机,并且要选择对应的有线或者无线的网卡,如果主机是插网线联网的,那就选择有线网卡,如果主机是连无线网络的就选择无线网卡. 什么是桥接模式?桥接模式就是将主机网卡与虚拟机虚拟的网卡利用虚拟网桥进行通信.在桥接的作用下,类似于把物理主机虚拟为一个交换机,所有桥接设置的虚拟机连接到这个交换机的一个接口上,物理主机也同样插在这个交换机当中,所以所有桥接下的网卡与网卡都是交换模式的,相互可以访问而不干扰.在桥接模式下,虚拟机ip地址需要与主机在同一个网段,如果需要联网,则网关与

吴裕雄--天生自然 神经网络人工智能项目:基于深度学习TensorFlow框架的图像分类与目标跟踪报告(续一)

1.3 项目计划 第一周:深入学习和了解神经网络的工作原理,学习卷积的相关理论. 第二周:使用python的TensorFlow库,编写神经网络深度学习代码,搭建神经网络层,并且了解其工作原理和相关的计算.相关参数的传递等,到htttps://www.kaggle.com/moltean/fruits下载fruits压缩包,对数据进行初步的处理. 第三周:使用TensorFlow搭建卷积神经网络,采用训练集数据对测试集数据进行预测:完成数据可视化,显示每个文件夹中第5张图片.使用Tensorbo

吴裕雄--天生自然python Google深度学习框架:Tensorflow实现迁移学习

import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platform import gfile import tensorflow.contrib.slim as slim # 加载通过TensorFlow-Slim定义好的inception_v3模型. import tensorflow.contrib.slim.python.slim.nets.incepti