【算法学习笔记】88.显式DFS SJTU OJ 2202. 梅西的过人

#include <iostream>
#include <stack>
#include <cstdio>
#include <cstring>
using namespace std;

int k,n,m;
bool map[1000+5][1000+5];
bool vis[1000+5][1000+5];
int dx[4] = {0,0,-1,+1};
int dy[4] = {+1,-1,0,0};
void init(){
    cin>>n>>m;
    for (int i = 1; i <= n; ++i){
        for (int j = 1; j <= m; ++j){
            int t;
            scanf("%d",&t);
            map[i][j] = t;
        }
    }
    memset(vis,0,sizeof(vis));
}

struct Point
{
    int x;
    int y;
    int done;
    Point(int a,int b){
        x = a;
        y = b;
        done = 0;
    }
};

bool build(){
    stack<Point> s;
    Point start(1,1);
    s.push(start);
    while(!s.empty()){
        Point cur = s.top();
        s.pop();
        vis[cur.x][cur.y] = true;
        for (int i = 0; i < 4; ++i)
        {
            int new_x = cur.x + dx[i];
            int new_y = cur.y + dy[i];
            if(new_x>=1 and new_x<=n and new_y>=1 and new_y<=m){
                if(!vis[new_x][new_y]){
                    if(map[new_x][new_y]==false or cur.done == 0){
                        Point next(new_x,new_y);
                        if(map[new_x][new_y])
                            next.done = 1;
                        s.push(next);
                        vis[next.x][next.y] = true;
                        if(new_x==n and new_y==m)
                            return true;
                    }
                }
            }
        }
    }
    return false;
}

int main(int argc, char const *argv[])
{
    cin>>k;
    for (int i = 0; i < k; ++i)
    {
        init();
        cout<<build()<<endl;
    }
    return 0;
}
时间: 2024-09-30 14:01:51

【算法学习笔记】88.显式DFS SJTU OJ 2202. 梅西的过人的相关文章

【算法学习笔记】51. 区间排序问题 SJTU OJ 1360 偶像丁姐的烦恼

Description 成为LL冠军的人气偶像丁姐最近比较烦,许多商业活动找上门来.因为每次商业活动给的毛爷爷都一样,所以丁姐希望能够尽可能多的参加这些活动.然而,商业活动的起止时间并不由丁姐说了算,因此丁姐想写一个程序,求出他最多能够参加的商业活动的数量. Input Format 第一行一个数n,表示可选活动的数量. 接下n行每行两个数,表示每个活动开始时间t1_i和结束的时间t2_i. Output Format 一个数字,表示丁姐最多能够参加的活动的数量. Sample Input 10

【算法学习笔记】50.字符串处理 SJTU OJ 1361 丁姐的周末

Description 丁姐来到了神秘的M78星云,为了成为和凹凸曼一样强大的男人有朝一日回到地球拯救世界,丁姐开始了刻苦的学习.但丁姐先要知道在M78星云上一周有多少天,这样他才能知道什么时候是周末可以带妹子出去玩.他找到一个老凹凸曼,但是老凹凸曼自己记性不太好,偶尔会告诉他错误的信息. 凹凸曼会告诉丁姐如下格式的信息: Today is xxxday. Yesterday was yyyend. Tomorrow will be zzzday. 规则1: xxx/yyy/zzz为任意字符串,

【算法学习笔记】43.动态规划 逆向思维 SJTU OJ 1012 增长率问题

1012. 增长率问题 Description 有一个数列,它是由自然数组成的,并且严格单调上升.最小的数不小于S,最大的不超过T.现在知道这个数列有一个性质:后一个数相对于前一个数的增长率总是百分比下的整数(如5相对于4的增长率是25%,25为整数:而9对7就不行了).现在问:这个数列最长可以有多长?满足最长要求的数列有多少个? Input Format 输入仅有一行,包含S和T两个数( 0<S<T≤200000 ). 30%的数据,0<S<T≤100 : 100%的数据,0&l

【算法学习笔记】60.经典动态规划 SJTU OJ 1370 赫萝的桃子

Description 赫萝最喜欢吃蜂蜜腌渍的桃子.然而她能够得到的桃子有限,因此赫萝必须精打细算.赫萝在b天内可以得到a个桃子,每天赫萝至少吃一个桃子,她想知道她在a天内有多少种吃桃子的方法.吃桃子的顺序并不重要,也就是说赫萝认为“第一天吃一个桃子第二天吃两个桃子”和“第一天吃两个桃子第二天吃一个桃子”算一种方法. Input Format 每个测试点有多组测试数据. 第一行一个数n,表示测试的数量. 接下来n行每行两个数a, b(a>b). Output Format 输出n行,每行一个数,

【算法学习笔记】87. 枚举路径 SJTU OJ 1999 二哥找宝藏

这个题只用BFS来搜索一次会很麻烦, 因为每次经过一个宝藏之后,要把所有的vis重置(因为可以重复经过同一点, 但是这样会有很多不必要的路径) 看题目的暗示 最多只有5个宝藏  我们要把所有的宝藏收集齐全, 如果确定了收集的顺序, 那么也就确定了路径 那么可以知道 A55的排列一共是120种路径 遍历起来毫无压力 我们枚举所有宝藏的全排列, 然后从起点开始走, 记录整个路径的步数, 最后取最小值即可. 这里生产全排列的方法利用了 STL的next_permutation函数 非常爽....(要引

【算法学习笔记】70.回文序列 动态规划 SJTU OJ 1066 小M家的牛们

这个题很多地方暗示了DP的路径. 我们处理时,dp[i][j]可以认为是从i坐标到j坐标的序列达到回文效果需要的最小代价,以此向外扩展,最终得到dp[0][M-1]就是结果. 我们要注意到处理dp[i][j]时,我们需要知道 dp(i+1,j-1)的结果,所以i必须降序,j必须升序,才能保证在计算dp(i,j)时,可以利用已经计算过的结果. 所以 i应该从M-2 到 0 递减 j在内层 从i+1到M-1 递增 在处理dp(i,j)时,第一要看name[i]和name[j]是否相等,如果相等的话,

【算法学习笔记】34.高精度除法 SJTU OJ 1026/1016

高精度除法, 这个和加减乘一样,我们都要从手算的角度入手.举一个例子,比如 524134 除以 123.结果是4261 第一位4的来源是 我们把 524和123对齐,然后进行循环减法,循环了4次,余32,将32134的前三位321继续和123对齐,循环减法2次,余75,把7534的前三位753和123对齐,循环减法6次,余15,将154和123对齐,只能减1次,所以结果是4 2 6 1. 把上述过程程序化 1.把A,B两个数存入char数组 0下标表示的是最高位2.把A的前lenB位和B对齐进行

【算法学习笔记】64. 枚举法 SJTU OJ 1381 畅畅的牙签

枚举法就好了,推理很麻烦,感觉也做不出来. 创造一个结构体,一个是真实的数,一个是花费的牙签数. 构建一位数,两位数,三位数即可. #include <iostream> #include <vector> using namespace std; //从0到9耗费的牙签数 int cost[10]={6,2,5,5,4,5,6,3,7,6}; struct num { int n;//用于计算的数 int c;//耗费的牙签 }; num v[100000]; int main(

EM算法学习笔记2:深入理解

文章<EM算法学习笔记1:简介>中介绍了EM算法的主要思路和流程,我们知道EM算法通过迭代的方法,最后得到最大似然问题的一个局部最优解.本文介绍标准EM算法背后的原理. 我们有样本集X,隐变量Z,模型参数θ,注意他们3个都是向量,要求解的log似然函数是lnp(X|θ),而这个log似然函数难以求解,我们假设隐变量Z已知,发现lnp(X,Z|θ) 的最大似然容易求解. 有一天,人们发现引入任意一个关于隐变量的分布q(Z),对于这个log似然函数,存在这样一个分解: lnp(X|θ)=L(q,θ