机器学习算法之旅A Tour of Machine Learning Algorithms

In this post we take a tour of the most popular machine learning algorithms. It is useful to tour the main algorithms in the field to get a feeling of what methods are available.

There are so many algorithms available and it can feel overwhelming when algorithm names are thrown around and you are expected to just know what they are and where they fit.

In this post I want to give you two ways to think about and categorize the algorithms you may come across in the field.

  • The first is a grouping of algorithms by the learning style.
  • The second is a grouping of algorithms by similarity in form or function (like grouping similar animals together).

Both approaches are useful, but we will focus in on the grouping of algorithms by similarity and go on a tour of a variety of different algorithm types.

After reading this post, you will have a much better understanding of the most popular machine learning algorithms for supervised learning and how they are related.

A cool example of an ensemble of lines of best fit. Weak members are grey, the combined prediction is red.
Plot from Wikipedia, licensed under public domain.

Algorithms Grouped by Learning Style

There are different ways an algorithm can model a problem based on its interaction with the experience or environment or whatever we want to call the input data.

It is popular in machine learning and artificial intelligence textbooks to first consider the learning styles that an algorithm can adopt.

There are only a few main learning styles or learning models that an algorithm can have and we’ll go through them here with a few examples of algorithms and problem types that they suit.

This taxonomy or way of organizing machine learning algorithms is useful because it forces you to think about the the roles of the input data and the model preparation process and select one that is the most appropriate for your problem in order to get the best result.

Let’s take a look at four different learning styles in machine learning algorithms:

Supervised Learning

Input data is called training data and has a known label or result such as spam/not-spam or a stock price at a time.

A model is prepared through a training process where it is required to make predictions and is corrected when those predictions are wrong. The training process continues until the model achieves a desired level of accuracy on the training data.

Example problems are classification and regression.

Example algorithms include Logistic Regression and the Back Propagation Neural Network.

Unsupervised Learning

Input data is not labelled and does not have a known result.

A model is prepared by deducing structures present in the input data. This may be to extract general rules. It may through a mathematical process to systematically reduce redundancy, or it may be to organize data by similarity.

Example problems are clustering, dimensionality reduction and association rule learning.

Example algorithms include: the Apriori algorithm and k-Means.

Semi-Supervised Learning

Input data is a mixture of labelled and unlabelled examples.

There is a desired prediction problem but the model must learn the structures to organize the data as well as make predictions.

Example problems are classification and regression.

Example algorithms are extensions to other flexible methods that make assumptions about how to model the unlabelled data.

Overview

When crunching data to model business decisions, you are most typically using supervised and unsupervised learning methods.

A hot topic at the moment is semi-supervised learning methods in areas such as image classification where there are large datasets with very few labelled examples.

Algorithms Grouped By Similarity

Algorithms are often grouped by similarity in terms of their function (how they work). For example, tree-based methods, and neural network inspired methods.

I think this is the most useful way to group algorithms and it is the approach we will use here.

This is a useful grouping method, but it is not perfect. There are still algorithms that could just as easily fit into multiple categories like Learning Vector Quantization that is both a neural network inspired method and an instance-based method. There are also categories that have the same name that describes the problem and the class of algorithm such as Regression and Clustering.

We could handle these cases by listing algorithms twice or by selecting the group that subjectively is the “best” fit. I like this latter approach of not duplicating algorithms to keep things simple.

In this section I list many of the popular machine leaning algorithms grouped the way I think is the most intuitive. It is not exhaustive in either the groups or the algorithms, but I think it is representative and will be useful to you to get an idea of the lay of the land.

Please Note: There is a strong bias towards algorithms used for classification and regression, the two most prevalent supervised machine learning problems you will encounter.

If you know of an algorithm or a group of algorithms not listed, put it in the comments and share it with us. Let’s dive in.

Regression Algorithms

Regression is concerned with modelling the relationship between variables that is iteratively refined using a measure of error in the predictions made by the model.

Regression methods are a workhorse of statistics and have been cooped into statistical machine learning. This may be confusing because we can use regression to refer to the class of problem and the class of algorithm. Really, regression is a process.

The most popular regression algorithms are:

  • Ordinary Least Squares Regression (OLSR)
  • Linear Regression
  • Logistic Regression
  • Stepwise Regression
  • Multivariate Adaptive Regression Splines (MARS)
  • Locally Estimated Scatterplot Smoothing (LOESS)

Instance-based Algorithms

Instance based learning model a decision problem with instances or examples of training data that are deemed important or required to the model.

Such methods typically build up a database of example data and compare new data to the database using a similarity measure in order to find the best match and make a prediction. For this reason, instance-based methods are also called winner-take-all methods and memory-based learning. Focus is put on representation of the stored instances and similarity measures used between instances.

The most popular instance-based algorithms are:

  • k-Nearest Neighbour (kNN)
  • Learning Vector Quantization (LVQ)
  • Self-Organizing Map (SOM)
  • Locally Weighted Learning (LWL)

Regularization Algorithms

An extension made to another method (typically regression methods) that penalizes models based on their complexity, favoring simpler models that are also better at generalizing.

I have listed regularization algorithms separately here because they are popular, powerful and generally simple modifications made to other methods.

The most popular regularization algorithms are:

  • Ridge Regression
  • Least Absolute Shrinkage and Selection Operator (LASSO)
  • Elastic Net
  • Least-Angle Regression (LARS)

Decision Tree Algorithms

Decision tree methods construct a model of decisions made based on actual values of attributes in the data.

Decisions fork in tree structures until a prediction decision is made for a given record. Decision trees are trained on data for classification and regression problems. Decision trees are often fast and accurate and a big favorite in machine learning.

The most popular decision tree algorithms are:

  • Classification and Regression Tree (CART)
  • Iterative Dichotomiser 3 (ID3)
  • C4.5 and C5.0 (different versions of a powerful approach)
  • Chi-squared Automatic Interaction Detection (CHAID)
  • Decision Stump
  • M5
  • Conditional Decision Trees

Bayesian Algorithms

Bayesian methods are those that are explicitly apply Bayes’ Theorem for problems such as classification and regression.

The most popular Bayesian algorithms are:

  • Naive Bayes
  • Gaussian Naive Bayes
  • Multinomial Naive Bayes
  • Averaged One-Dependence Estimators (AODE)
  • Bayesian Belief Network (BBN)
  • Bayesian Network (BN)

Clustering Algorithms

Clustering, like regression describes the class of problem and the class of methods.

Clustering methods are typically organized by the modelling approaches such as centroid-based and hierarchal. All methods are concerned with using the inherent structures in the data to best organize the data into groups of maximum commonality.

The most popular clustering algorithms are:

  • k-Means
  • k-Medians
  • Expectation Maximisation (EM)
  • Hierarchical Clustering

Association Rule Learning Algorithms

Association rule learning are methods that extract rules that best explain observed relationships between variables in data.

These rules can discover important and commercially useful associations in large multidimensional datasets that can be exploited by an organisation.

The most popular association rule learning algorithms are:

  • Apriori algorithm
  • Eclat algorithm

Artificial Neural Network Algorithms

Artificial Neural Networks are models that are inspired by the structure and/or function of biological neural networks.

They are a class of pattern matching that are commonly used for regression and classification problems but are really an enormous subfield comprised of hundreds of algorithms and variations for all manner of problem types.

Note that I have separated out Deep Learning from neural networks because of the massive growth and popularity in the field. Here we are concerned with the more classical methods.

The most popular artificial neural network algorithms are:

  • Perceptron
  • Back-Propagation
  • Hopfield Network
  • Radial Basis Function Network (RBFN)

Deep Learning Algorithms

Deep Learning methods are a modern update to Artificial Neural Networks that exploit abundant cheap computation.

They are concerned with building much larger and more complex neural networks, and as commented above, many methods are concerned with semi-supervised learning problems where large datasets contain very little labelled data.

The most popular deep learning algorithms are:

  • Deep Boltzmann Machine (DBM)
  • Deep Belief Networks (DBN)
  • Convolutional Neural Network (CNN)
  • Stacked Auto-Encoders

Dimensionality Reduction Algorithms

Like clustering methods, dimensionality reduction seek and exploit the inherent structure in the data, but in this case in an unsupervised manner or order to summarise or describe data using less information.

This can be useful to visualize dimensional data or to simplify data which can then be used in a supervized learning method. Many of these methods can be adapted for use in classification and regression.

  • Principal Component Analysis (PCA)
  • Principal Component Regression (PCR)
  • Partial Least Squares Regression (PLSR)
  • Sammon Mapping
  • Multidimensional Scaling (MDS)
  • Projection Pursuit
  • Linear Discriminant Analysis (LDA)
  • Mixture Discriminant Analysis (MDA)
  • Quadratic Discriminant Analysis (QDA)
  • Flexible Discriminant Analysis (FDA)

Ensemble Algorithms

Ensemble methods are models composed of multiple weaker models that are independently trained and whose predictions are combined in some way to make the overall prediction.

Much effort is put into what types of weak learners to combine and the ways in which to combine them. This is a very powerful class of techniques and as such is very popular.

  • Boosting
  • Bootstrapped Aggregation (Bagging)
  • AdaBoost
  • Stacked Generalization (blending)
  • Gradient Boosting Machines (GBM)
  • Gradient Boosted Regression Trees (GBRT)
  • Random Forest

Other Algorithms

Many algorithms were not covered.

For example, what group would Support Vector Machines go into? It’s own?

I did not cover algorithms from speciality tasks in the process of machine learning, such as:

  • Feature selection algorithms
  • Algorithm accuracy evaluation
  • Performance measures

I also did not cover algorithms from speciality sub-fields of machine learning, such as:

  • Computational intelligence (evolutionary algorithms, etc.)
  • Computer Vision (CV)
  • Natural Language Processing (NLP)
  • Recommender Systems
  • Reinforcement Learning
  • Graphical Models
  • And more…

These may feature in future posts.

Get your FREE Algorithms Mind Map

Sample of the handy machine learning algorithms mind map.

I‘ve created a handy mind map of 60+ algorithms organized by type.

Download it, print it and use it to jump-start your next machine learning project.

Download For Free

Also receive exclusive email tips and tricks.

Further Reading

This tour of machine learning algorithms was intended to give you an overview of what is out there and and some ideas on how to relate algorithms to each other.

I’ve collected together some resources for you to continue your reading on algorithms. If you have a specific question, please leave a comment.

Other Lists of Algorithms

There are other great lists of algorithms out there if you’re interested. Below are few hand selected examples.

How to Study Machine Learning Algorithms

Algorithms are a big part of machine learning. It’s a topic I am passionate about and write about a lot on this blog. Below are few hand selected posts that might interest you for further reading.

How to Run Machine Learning Algorithms

Sometimes you just want to dive into code. Below are some links you can use to run machine learning algorithms, code them up using standard libraries or implement them from scratch.

Final Word

I hope you have found this tour useful.

Please, leave a comment if you have any questions or ideas on how to improve the algorithm tour.

Update #1: Continue the discussion on HackerNews and reddit.

Update #2: I’ve added a bunch more resources and more algorithms. I’ve also added a handy mind map that you can download (see above).

About Jason Brownlee

The editor-in-chief at MachineLearningMastery.com. Jason is a husband, father, researcher, author, professional programmer and a machine learning practitioner.Learn more about him.

from: http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

时间: 2024-10-29 10:46:37

机器学习算法之旅A Tour of Machine Learning Algorithms的相关文章

机器学习算法之旅(转载)

http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/ In this post, we take a tour of the most popular machine learning algorithms. It is useful to tour the main algorithms in the field to get a feeling of what methods are availabl

机器学习算法之旅【转】

在理解了我们需要解决的机器学习问题之后,我们可以思考一下我们需要收集什么数据以及我们可以用什么算法.本文我们会过一遍最流行的机器学习算法,大致了解哪些方法可用,很有帮助. 机器学习领域有很多算法,然后每种算法又有很多延伸,所以对于一个特定问题,如何确定一个正确的算法是很困难的.本文中我想给你们两种方法来归纳在现实中会遇到的算法. 学习方式 根据如何处理经验.环境或者任何我们称之为输入的数据,算法分为不同种类.机器学习和人工智能课本通常先考虑算法可以适应的学习方式. 这里只讨论几个主要的学习风格或

机器学习算法之旅

在理解了我们须要解决的机器学习问题之后,我们能够思考一下我们须要收集什么数据以及我们能够用什么算法.本文我们会过一遍最流行的机器学习算法,大致了解哪些方法可用,非常有帮助. 机器学习领域有非常多算法,然后每种算法又有非常多延伸,所以对于一个特定问题,怎样确定一个正确的算法是非常困难的.本文中我想给你们两种方法来归纳在现实中会遇到的算法. 学习方式 依据怎样处理经验.环境或者不论什么我们称之为输入的数据,算法分为不同种类.机器学习和人工智能课本通常先考虑算法能够适应的学习方式. 这里仅仅讨论几个基

机器学习---逻辑回归(二)(Machine Learning Logistic Regression II)

在<机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)>一文中,我们讨论了如何用逻辑回归解决二分类问题以及逻辑回归算法的本质.现在来看一下多分类的情况. 现实中相对于二分类问题,我们更常遇到的是多分类问题.多分类问题如何求解呢?有两种方式.一种是方式是修改原有模型,另一种方式是将多分类问题拆分成一个个二分类问题解决. 先来看一下第一种方式:修改原有模型.即:把二分类逻辑回归模型变为多分类逻辑回归模型. (二分类逻辑回归称为binary

Machine Learning Algorithms Study Notes(3)--Learning Theory

Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 229 的学习笔记. Machine Learning Algorithms Study Notes 系列文章介绍 3 Learning Theory 3.1 Regularization and model selection 模型选择问题:对于一个学习问题,可以有多种模型选择.比如要拟合一组样本点,

Machine Learning Algorithms Study Notes(2)--Supervised Learning

Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 2    Supervised Learning    3 2.1    Perceptron Learning Algorithm (PLA)    3 2.1.1    PLA -- "知错能改"演算法    4 2.2    Linear Regression    6 2.2.1    线性回归模型    6 2.2.2    最小二乘法( le

Machine Learning Algorithms Study Notes(1)--Introduction

Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 目 录 1    Introduction    1 1.1    What is Machine Learning    1 1.2    学习心得和笔记的框架    1 2    Supervised Learning    3 2.1    Perceptron Learning Algorithm (PLA)    3 2.1.1    PLA -- "知

机器学习算法之旅【翻译】【转】

在我们了解了需要解决的机器学习问题的类型之后,我们可以开始考虑搜集来的数据的类型以及我们可以尝试的机器学习算法.在这个帖子里,我们会介绍一遍最流行的机器学习算法.通过浏览主要的算法来大致了解可以利用的方法是很有帮助的. 可利用的算法非常之多.困难之处在于既有不同种类的方法,也有对这些方法的扩展.这导致很快就难以区分到底什么才是正统的算法.在这个帖子里,我希望给你两种方式来思考和区分在这个领域中你将会遇到的算法. 第一种划分算法的方式是根据学习的方式,第二种则是基于形式和功能的相似性(就像把相似的

Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)

1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1.1.3    如何选择K值 1.1.4    Spark MLlib 实现 k-means 算法 1.2    Mixture of Gaussians and the EM algorithm 1.3    The EM Algorithm 1.4    Principal Components