数学之欧拉函数 &几道poj欧拉题

欧拉函数总结+证明

欧拉函数总结2



POJ 1284 原根

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;

int Euler(int n)
{
    int res=n;
    for(int i=2;i*i<=n;i++)
    {
        while(n%i==0)
        {
            n/=i; res-=(res/i);
            while(n%i==0)
                n/=i;
        }
    }
    if(n>1)
       res-=(res/n);
    return res;
}

int main()
{
    int p;
    while(~scanf("%d",&p))
        printf("%d\n",Euler(p-1));
    return 0;
}


POJ 2478  欧拉打表(不打表会TLE)

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
#define N 1000000

int e[N+5];
void init()
{
    int i,j;
    memset(e,0,sizeof(e));
    for(i=2;i<=N;i++)
    {
        if(!e[i])
        {
            for(j=i;j<=N;j+=i)
            {
                if(!e[j])
                    e[j]=j;
                e[j]=e[j]/i*(i-1);
            }
        }
    }
}

int main()
{
    int n;
    init();
    while(scanf("%d",&n)&&n)
    {
        ll res=0;
        for(int i=2;i<=n;i++)
            res+=e[i];
        printf("%I64d\n",res);
    }
    return 0;
}

谜之POJ 3358

看不懂题目,看不懂别人的解题报告。。。好像很厉害的详解

时间: 2024-10-25 20:32:24

数学之欧拉函数 &几道poj欧拉题的相关文章

数论 - 欧拉函数的运用 --- poj 3090 : Visible Lattice Points

Visible Lattice Points Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5636   Accepted: 3317 Description A lattice point (x, y) in the first quadrant (x and y are integers greater than or equal to 0), other than the origin, is visible fr

POJ 2478 欧拉函数(欧拉筛法) HDU 1576 逆元求法

相关逆元求法,我之前有写过,还有欧拉函数的求法,欧拉函数与逆元的关系  点击 POJ 2478 又是一个打表的题目,一眼看出结果就是前n个欧拉函数值的和. 这里直接计算欧拉函数值求和会超时,看见多组数据. 然后就是计算欧拉函数,打表就好了. #include <stdio.h> #include <string.h> #include <iostream> using namespace std; typedef long long LL; const int N =

欧拉函数 &amp; 【POJ】2478 Farey Sequence &amp; 【HDU】2824 The Euler function

http://poj.org/problem?id=2478 http://acm.hdu.edu.cn/showproblem.php?pid=2824 欧拉函数模板裸题,有两种方法求出所有的欧拉函数,一是筛法,而是白书上的筛法. 首先看欧拉函数的性质: 欧拉函数是求小于n且和n互质(包括1)的正整数的个数.记为φ(n). 欧拉定理:若a与n互质,那么有a^φ(n) ≡ 1(mod n),经常用于求乘法逆元. 若p是一个质数,那么φ(p) = p-1,注意φ(1) = 1. 欧拉函数是积性函数

poj 2480 欧拉函数+积性函数+GCD

题目:http://poj.org/problem?id=2480 首先要会欧拉函数:先贴欧拉函数的模板,来源于吉林大学的模板: //欧拉函数PHI(n)表示的是比n小,并且与n互质的正整数的个数(包括1). unsigned euler(unsignedx) {// 就是公式 unsigned i, res=x; for(i = 2; i < (int)sqrt(x * 1.0) + 1; i++) if(x%i==0) { res = res / i * (i - 1); while(x %

poj 2773 Happy 2006(欧拉函数应用)

http://poj.org/problem?id=2773 题意:输入n,k,求与n不互素的第k个数,k可能大于n. 思路:以n=6为例,与6互素的数有一定规律.{1,5},{7,12},{13,18}......,发现在[1,n],[n+1,n*2]......[m*n+1,(m+1)*n]区间内素数个数相同,且对应位置的数都相差n的整数倍.因此只要求出[1,n]内的与n互素的数即可.这个过程没必要一个一个枚举,可以用欧拉函数解决.因为欧拉函数已经求出了n的所有质因子,与n不互素的数都与n有

欧拉函数与欧拉打表解决实际问题

1.欧拉函数的定义: 欧拉函数phi(x)等于不超过x且与x互素的整数的个数. 2.欧拉函数的求法:推导过程见随笔<欧拉函数与容斥原理>. 3.代码实现欧拉函数: 1 int euler_phi(int n) 2 { 3 int m=(int)sqrt(n+0.5);//取一半就行,简化计算 4 int ans=n; 5 for(int i=2;i<=m;i++) 6 if(n%i==0)//找素因子 7 { 8 ans=ans/i*(i-1);//公式的运用 9 while(n%i==

「POJ3696」The Luckiest number【数论,欧拉函数】

# 题解 一道数论欧拉函数和欧拉定理的入门好题. 虽然我提交的时候POJ炸掉了,但是在hdu里面A掉了,应该是一样的吧. 首先我们需要求的这个数一定可以表示成\(\frac{(10^x-1)}{9}\times 8\). 那么可以列出一个下面的方程 \[\frac{(10^x-1)}{9}\times 8=L\times k\] 设\(d=gcd(9L,8)=gcd(L,8)\) \[\frac89(10^x-1)=Lk\] \[\frac{8(10^x-1)}d=\frac{9Lk}{d}\]

hdu2824 The Euler function 筛选法求欧拉函数模板题

//求a , b范围内的所有的欧拉函数 //筛选法求欧拉函数模板题 #include<cstdio> #include<cstring> #include<iostream> using namespace std ; const int maxn = 3000010 ; typedef __int64 ll ; int e[maxn] ; int a ,  b ; void Euler() { int i,j; for (i=1;i<maxn;i++) e[i]

欧拉函数性质与求法 [数论][欧拉函数]

n的欧拉函数值用符号φ(n)表示 欧拉函数的定义是,对于一个正整数n,小于n且与n互质的数的数目(包括1,特殊地,φ(1)=1 ). 设p1,p2,p3,...,pr为n的全部r个质因数,则有φ(n)=n*(1-1/p1)*(1-1/p2)*(1-1/p3)*(1-1/p4)…..(1-1/pr). 显然,用这个方法来计算单个欧拉函数是可以求解的. 附上代码: 1 int get_phi(int x){ 2 int re=x; 3 for(int i=2;i*i<=x;i++) 4 if(x%i