Python模块-logging、序列化模块、re模块

MarkdownPad Document


logging模块

import logging  
logging.debug(‘debug message‘)  
logging.info(‘info message‘)  
logging.warning(‘warning message‘)  
logging.error(‘error message‘)  
logging.critical(‘critical message‘)

运行结果:
C:\Python36\python.exe C:/Users/Administrator/PycharmProjects/py_fullstack_s4/day34/test.py
WARNING:root:warning message
ERROR:root:error message
CRITICAL:root:critical message

可以看出有一个默认的等级:debug--info--warning(默认)--error--critical

配置的两种方式:

1、congfig函数

import logging  
logging.basicConfig(level=logging.DEBUG,  
                    format=‘%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s‘,  
                    datefmt=‘%a, %d %b %Y %H:%M:%S‘,  
                    filename=‘/tmp/test.log‘,  
                    filemode=‘w‘)

logging.debug(‘debug message‘)  
logging.info(‘info message‘)  
logging.warning(‘warning message‘)  
logging.error(‘error message‘)  
logging.critical(‘critical message‘)

level表示日志等级,选择DEBUG的话会将所有的都打印出来,最重要的就是format的内容,具体的配置参数如下:

可见在logging.basicConfig()函数中可通过具体参数来更改logging模块默认行为,可用参数有
filename:用指定的文件名创建FiledHandler(后边会具体讲解handler的概念),这样日志会被存储在指定的文件中。
filemode:文件打开方式,在指定了filename时使用这个参数,默认值为“a”还可指定为“w”。
format:指定handler使用的日志显示格式。
datefmt:指定日期时间格式。
level:设置rootlogger(后边会讲解具体概念)的日志级别
stream:用指定的stream创建StreamHandler。可以指定输出到sys.stderr,sys.stdout或者文件(f=open(‘test.log‘,‘w‘)),默认为sys.stderr。若同时列出了filename和stream两个参数,则stream参数会被忽略。

format参数中可能用到的格式化串:
%(name)s Logger的名字
%(levelno)s 数字形式的日志级别
%(levelname)s 文本形式的日志级别
%(pathname)s 调用日志输出函数的模块的完整路径名,可能没有
%(filename)s 调用日志输出函数的模块的文件名
%(module)s 调用日志输出函数的模块名
%(funcName)s 调用日志输出函数的函数名
%(lineno)d 调用日志输出函数的语句所在的代码行
%(created)f 当前时间,用UNIX标准的表示时间的浮 点数表示
%(relativeCreated)d 输出日志信息时的,自Logger创建以 来的毫秒数
%(asctime)s 字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒
%(thread)d 线程ID。可能没有
%(threadName)s 线程名。可能没有
%(process)d 进程ID。可能没有
%(message)s用户输出的消息

2、logger对象

上述几个例子中我们了解到了logging.debug()、logging.info()、logging.warning()、logging.error()、logging.critical()(分别用以记录不同级别的日志信息),logging.basicConfig()(用默认日志格式(Formatter)为日志系统建立一个默认的流处理器(StreamHandler),设置基础配置(如日志级别等)并加到root logger(根Logger)中)这几个logging模块级别的函数,另外还有一个模块级别的函数是logging.getLogger([name])(返回一个logger对象,如果没有指定名字将返回root logger)
先看一个最简单的过程:

import logging

logger = logging.getLogger()
# 创建一个handler,用于写入日志文件
fh = logging.FileHandler(‘test.log‘)

# 再创建一个handler,用于输出到控制台
ch = logging.StreamHandler()

formatter = logging.Formatter(‘%(asctime)s - %(name)s - %(levelname)s - %(message)s‘)

fh.setFormatter(formatter)
ch.setFormatter(formatter)

logger.addHandler(fh) #logger对象可以添加多个fh和ch对象
logger.addHandler(ch)

logger.debug(‘logger debug message‘)
logger.info(‘logger info message‘)
logger.warning(‘logger warning message‘)
logger.error(‘logger error message‘)
logger.critical(‘logger critical message‘)

运行结果:
2017-04-27 09:19:56,145 - root - WARNING - logger warning message
2017-04-27 09:19:56,146 - root - ERROR - logger error message
2017-04-27 09:19:56,146 - root - CRITICAL - logger critical message

先简单介绍一下,logging库提供了多个组件:Logger、Handler、Filter、Formatter。Logger对象提供应用程序可直接使用的接口,Handler发送日志到适当的目的地,Filter提供了过滤日志信息的方法,Formatter指定日志显示格式。

Logger是一个树形层级结构,输出信息之前都要获得一个Logger(如果没有显示的获取则自动创建并使用root Logger,如第一个例子所示)。

logger = logging.getLogger()返回一个默认的Logger也即root Logger,并应用默认的日志级别、Handler和Formatter设置。
当然也可以通过Logger.setLevel(lel)指定最低的日志级别,可用的日志级别有logging.DEBUG、logging.INFO、logging.WARNING、logging.ERROR、logging.CRITICAL。

Logger.debug()、Logger.info()、Logger.warning()、Logger.error()、Logger.critical()输出不同级别的日志,只有日志等级大于或等于设置的日志级别的日志才会被输出。

logger.debug(‘logger debug message‘)  
logger.info(‘logger info message‘)  
logger.warning(‘logger warning message‘)  
logger.error(‘logger error message‘)  
logger.critical(‘logger critical message‘)

只输出了

2014-05-06 12:54:43,222 - root - WARNING - logger warning message
2014-05-06 12:54:43,223 - root - ERROR - logger error message
2014-05-06 12:54:43,224 - root - CRITICAL - logger critical message

从这个输出可以看出logger = logging.getLogger()返回的Logger名为root。这里没有用logger.setLevel(logging.Debug)显示的为logger设置日志级别,所以使用默认的日志级别WARNIING,故结果只输出了大于等于WARNIING级别的信息。


序列化模块(json、pickle)

什么是序列化?

我们把对象(变量)从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。

序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上。

反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。

json模块

如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。

JSON表示的对象就是标准的JavaScript语言的对象,JSON和Python内置的数据类型对应如下:

#----------------------------序列化

import json

dic={‘name‘:‘alvin‘,‘age‘:23,‘sex‘:‘male‘}
print(type(dic))#<class ‘dict‘>
j=json.dumps(dic)
print(type(j))#<class ‘str‘>
f=open(‘序列化对象‘,‘w‘)
f.write(j)  #-------------------等价于json.dump(dic,f)
f.close()
#-----------------------------反序列化<br>
import json
f=open(‘序列化对象‘)
data=json.loads(f.read())#  等价于data=json.load(f)

d = {‘name‘:‘alvin‘,‘age‘:23,‘sex‘:‘male‘}

f = open("filename",‘w‘)

json.dump(d,f)   #与dumps的区别在于将两步合成一步

f.close()

pickle模块

##----------------------------序列化
import pickle

dic={‘name‘:‘alvin‘,‘age‘:23,‘sex‘:‘male‘}
print(type(dic))#<class ‘dict‘>
j=pickle.dumps(dic)
print(type(j))#<class ‘bytes‘>
f=open(‘序列化对象_pickle‘,‘wb‘)#注意是w是写入str,wb是写入bytes,j是‘bytes‘
f.write(j)  #-------------------等价于pickle.dump(dic,f
f.close()
#-------------------------反序列化
import pickle
f=open(‘序列化对象_pickle‘,‘rb‘)
data=pickle.loads(f.read())#  等价于data=pickle.load(f)
print(data[‘age‘])  

Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,并且可能不同版本的Python彼此都不兼容,因此,只能用Pickle保存那些不重要的数据,不能成功地反序列化也没关系。


re模块

就其本质而言,正则表达式(或 RE)是一种小型的、高度专业化的编程语言,(在Python中)它内嵌在Python中,并通过 re 模块实现。正则表达式模式被编译成一系列的字节码,然后由用 C 编写的匹配引擎执行。

字符匹配(普通字符,元字符):

1 普通字符:大多数字符和字母都会和自身匹配
             >>> re.findall(‘alvin‘,‘yuanaleSxalexwupeiqi‘)
                     [‘alvin‘]

2 元字符:. ^ $ * + ? { } [ ] | ( ) \

re.findall("(?:ad)+yuan","adadyuangfsdui") #在(ad)分组中加入: ‘?:‘表示去掉匹配默认的优先级,将字符串完全匹配出来,否则只匹配分组即括号中的内容

管道符:| 表示匹配它两边的内容

元字符之转义符
反斜杠后边跟元字符去除特殊功能,比如\.
反斜杠后边跟普通字符实现特殊功能,比如\d

\d  匹配任何十进制数;它相当于类 [0-9]。
\D 匹配任何非数字字符;它相当于类 [^0-9]。
\s  匹配任何空白字符;它相当于类 [ \t\n\r\f\v]。
\S 匹配任何非空白字符;它相当于类 [^ \t\n\r\f\v]。
\w 匹配任何字母数字字符;它相当于类 [a-zA-Z0-9_]。
\W 匹配任何非字母数字字符;它相当于类 [^a-zA-Z0-9_]
\b  匹配一个特殊字符边界,比如空格 ,&,#等

使用\b的时候需要注意,因为它在ASCII码表中有特殊的意义,表示退格,在python中使用正则表达式,会将代码先交给Python解释器进行解释,而解释器也支持‘\’转义符号,然后再交给正则表达式进行匹配,故使用时应该用如下形式:

ret=re.findall(‘c\\\\l‘,‘abc\le‘)
print(ret)
执行结果为:[‘c\\l‘]

re模块下的常用方法

import re
#1
re.findall(‘a‘,‘alvin yuan‘)    #返回所有满足匹配条件的结果,放在列表里
#2
re.search(‘a‘,‘alvin yuan‘).group()  #函数会在字符串内查找模式匹配,只到找到第一个匹配然后返回一个包含匹配信息的对象,该对象可以
 # 通过调用group()方法得到匹配的字符串,如果字符串没有匹配,则返回None。
#3
re.match(‘a‘,‘abc‘).group()     #同search,不过尽在字符串开始处进行匹配
#4
ret=re.split(‘[ab]‘,‘abcd‘)     #先按‘a‘分割得到‘‘和‘bcd‘,在对‘‘和‘bcd‘分别按‘b‘分割,可跟分割次数参数
print(ret)#[‘‘, ‘‘, ‘cd‘]
#5
ret=re.sub(‘\d‘,‘abc‘,‘alvin5yuan6‘,1)
print(ret)#alvinabcyuan6
ret=re.subn(‘\d‘,‘abc‘,‘alvin5yuan6‘)
print(ret)#(‘alvinabcyuanabc‘, 2)
#6
obj=re.compile(‘\d{3}‘)
ret=obj.search(‘abc123eeee‘)
print(ret.group())#123

import re
ret=re.finditer(‘\d‘,‘ds3sy4784a‘)
print(ret)  #<callable_iterator object at 0x10195f940>
print(next(ret).group())
print(next(ret).group())

import re
ret=re.findall(‘www.(baidu|oldboy).com‘,‘www.oldboy.com‘)
print(ret)#[‘oldboy‘]  这是因为findall会优先把匹配结果组里内容返回,如果想要匹配结果,取消权限即可
ret=re.findall(‘www.(?:baidu|oldboy).com‘,‘www.oldboy.com‘)
print(ret)#[‘www.oldboy.com‘]

命名分组

时间: 2024-10-28 12:39:28

Python模块-logging、序列化模块、re模块的相关文章

Python之路【第五篇】:Python基础(20)——模块、序列化、os模块

常用模块 time模块 time.time() import time import datetime print(time.time()) # 返回当前时间的时间戳 time.ctime() print(time.ctime()) # 将时间戳转化为字符串格式Wed Feb 17 11:41:27 2016,默认是当前系统时间的时间戳 print(time.ctime(time.time()-3600)) # ctime可以接收一个时间戳作为参数,返回该时间戳的字符串形式 Wed Feb 17

Python库:序列化和反序列化模块pickle介绍

1 前言 在“通过简单示例来理解什么是机器学习”这篇文章里提到了pickle库的使用,本文来做进一步的阐述. 通过简单示例来理解什么是机器学习 pickle是python语言的一个标准模块,安装python后已包含pickle库,不需要单独再安装.pickle模块实现了基本的数据序列化和反序列化.通过pickle模块的序列化操作我们能够将程序中运行的对象信息保存到文件中去,永久存储:通过pickle模块的反序列化操作,我们能够从文件中创建上一次程序保存的对象.在官方的介绍中,序列化操作的英文描述

python基础(20):序列化、json模块、pickle模块

1. 序列化 什么叫序列化——将原本的字典.列表等内容转换成一个字符串的过程就叫做序列化. 1.1 为什么要有序列化 为什么要把其他数据类型转换成字符串?因为能够在网络上传输的只能是bytes,而能够存储在文件里的只有bytes和str. 比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给?现在我们能想到的方法就是存在文件里,然后另一个python程序再从文件里读出来.但是我们都知道,对于文件来说是没有字典这个概念的,所以我们只能将数据转换成字典放到文件中.你一定会

Python基础(12)_python模块之sys模块、logging模块、序列化json模块、pickle模块、shelve模块

5.sys模块 sys.argv 命令行参数List,第一个元素是程序本身路径 sys.exit(n) 退出程序,正常退出时exit(0) sys.version 获取Python解释程序的版本信息 sys.maxint 最大的Int值 sys.path 返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值 sys.platform 返回操作系统平台名称 5.1 使用sys.argv进行登录判断,跳过 i/o阻塞 #使用sys.argv进行登录判断,跳过 i/o阻塞 import s

python 全栈 python基础 (二十一)logging日志模块 json序列化 正则表达式(re)

一.日志模块 两种配置方式:1.config函数 2.logger #1.config函数 不能输出到屏幕 #2.logger对象 (获取别人的信息,需要两个数据流:文件流和屏幕流需要将数据从两个数据流中接收) 1.函数式简单配置 import logging logging.debug('debug message') logging.info('info message') logging.warning('warning message') logging.error('error mes

25.Python序列化模块,hashlib模块, configparser模块,logging模块,异常处理

一.序列化模块 什么叫序列化——将原本的字典.列表等内容转换成一个字符串的过程就叫做序列化. 比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给?现在我们能想到的方法就是存在文件里,然后另一个python程序再从文件里读出来.但是我们都知道,对于文件来说是没有字典这个概念的,所以我们只能将数据转换成字典放到文件中.你一定会问,将字典转换成一个字符串很简单,就是str(dic)就可以办到了,为什么我们还要学习序列化模块呢?没错序列化的过程就是从dic 变成str(di

常用模块---sys&amp;logging&amp;序列化模块(json&amp;pickle)

sys 模块 sys.argv 命令行参数List,第一个元素是程序本身路径,通常用来避免io 阻塞 print('欢迎进入') info=sys.argv if info[index('-u')+1] == 'mona' and info[index('-p')+1] == '123': print('login successful') sys.exit(n) 退出程序,正常退出时exit(0) count=1 while count<10: if count == 8: sys.exit(

Python--模块之sys模块、logging模块、序列化json模块、序列化pickle模块

sys模块 sys.argv 命令行参数List,第一个元素是程序本身路径 sys.exit(n) 退出程序,正常退出时exit(0) sys.path 返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值 示例: import sys count = 1 while count <10: print(count) if count == 8: sys.exit() count += 1 print('ending')结果:12345678 import sys print(sys.

sys模块 logging模块 序列化模块

一 :sys模块 sys.argv 命令行参数List,第一个元素是程序本身路径 sys.exit(n) 退出程序,正常退出时exit(0) sys.version 获取Python解释程序的版本信息 sys.maxint 最大的Int值 sys.path 返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值 sys.platform 返回操作系统平台名称 二:logging模块 1 函数式简单配置 import logging logging.debug('debug messag