理论沉淀:隐马尔可夫模型(Hidden Markov Model, HMM)

理论沉淀:隐马尔可夫模型(Hidden Markov Model, HMM)

参考链接:http://www.zhihu.com/question/20962240

参考链接:http://blog.csdn.net/ppn029012/article/details/8923501

本博文链接:http://www.cnblogs.com/dzyBK/p/5011727.html

1 题设

假设有n个骰子(从1~n编号),每个骰子有m面,每面标有一个数字且不重复,数字取值限制在[1,m]。(1)若有放回地取出一个骰子投,当前取到哪个骰子与前一次取到的是哪个骰子相关。(2)同一个骰子出现不同数字的概率不一定相同(即不是均匀分布),不同骰子出现同一个数字的概率也不一定相同(即完全是n个不同的骰子)。

对于条件(1)可表达为:

式中,pij表示前一次取到第i个骰子时,当前取第j个骰子的概率。

对于条件(2)可表达为:

式中,qij表示第i个骰子出现数字j的概率。

数学里,将骰子(或骰子编号)称为HMM的隐性状态,将骰子的每面(或每面上的数字)称为隐性状态的表现。将矩阵Pnn称为隐性状态的转移概率矩阵,将矩阵Qnm称为隐性状态的表现概率矩阵。HMM可表示为{n,m,Pnm,Qnm}。

那HMM到底有什么作用勒?现在我们进行以下操作。

我们有放回地取k次骰子投,记录下每次投掷后的数字ai。设投掷结束后得到数字序列为A=[a1,a2,…,ak],那么A对应的骰子序列是什么勒?显得有很多种可能,每个数字可选的骰子有n个,所以共有u=k^n种可能的骰子序列,设为{B1,B2,…,Bu}。

注意:因为是有放回地取骰子,所以取到骰子可能重复。记录的数字也有可能重复,且两个重复的数字可能来源于同一个骰子,也可能来源于不同的骰子。

注意:以下将骰子编号与骰子等价,骰子编号序列与骰子序列等价。

2 基本问题

我想知道,A对应的骰子序列为Bi=[b1,b2,..,bk]的可能性有多大?

解法:概率乘法。

3 解码问题

我想知道,A最有可能对应的骰子序列是什么?

等价于:求使A出现的概率最大的骰子序列。

解法一:穷列举法。列举使A出现的u=k^n个可能的骰子序列,然后按照基本问题的解法计算每个骰子序列的使A出现的概率,概率最大者对应的骰子序列为所求。此法只对骰子个数少且骰子面数也少的情况适用。

解法二:最大似然估计。

(1)求使a1出现的概率最大的骰子,易进行,假设为b1

(2)在b1出现的情况下,求使a2出现的概率最大的骰子,易进行,假设为b2

(3)在b2出现的情况下,求使a3出现的概率最大的骰子,易进行,假设为b3

(n)在bn-1出现的情况下,求使an出现的概率最大的骰子,易进行,假设为bn

于是所求骰子序列为B=[b1,b2,..,bn]。

4 预测问题

假如我现在还没有取骰子投,我想知道我能投到A=[a1,a2,…,ak]的可能性有多大?

等价于:设骰子序列Bi(i=1,2,…,u)使A出现的概率为hi,则问题等价于求hi之和。

解法一:穷列举法。与解码问题相似,只不过解码问题是在{hi,hi,…,hu}中找最大者,而估计问题是求所有hi之和。

解法二:前向推导法。

其实就是一个迭代的过程。设出现[a1,a2,…,ai](i<k)的概率为gi,则出现[a1,a2,…,ai,ai+1]的概率为:

sum表示对矩阵Gi内的所有元素求和。

解释:ai+1可能来自n个骰子中的任何一个,所以有qi+1。同时,不管这次取到哪个骰子,前一次取到的骰子也有n种可能,所以有Pnn

5 学习问题

以上问题都必须已知Pnn和Qnm的情况才能进行。而实际应用中,这两个矩阵通常都未知或已知一部分。学习问题就是确定Pnn和Qnm的过程。现在假设我们有多组(越多越好)观测数据(即多组A,可通过反复投掷得到),根据这些观察数据我们就可以(近似地)确定Pnn和Qnm

详见:

6 相关概念

(1)马尔可夫链,马尔可夫随机场(MRF),马尔可夫过程等本质上都是HHM。

(2)我们取了k次骰子,每次取时都对应一个随机变量Xi,代表此次取的骰子(编号),k个随机变量的取值范围构成的集合称为HHM的状态空间,用Ω表示。这里,Ω={1,2,..,n}。

7 应用条件

应用HHM需要满足三个条件:

(1)马尔可夫假设:系统或模型的当前(隐性)状态都只依赖于前一个(隐性)状态:

(2)输出独立性假设:状态的表现只与此状态相关。

(3)不动性假设:状态与具体时间无关

马尔可夫假设更哲学说法是未来决定于现在而不是过去。

8 马尔可夫随机场(MRF)、吉布斯随机场(GRF)及条件随机场(CRF)之间的关系

时间: 2024-11-11 01:06:38

理论沉淀:隐马尔可夫模型(Hidden Markov Model, HMM)的相关文章

隐马尔可夫模型 (Hidden Markov Model,HMM) 转

隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价值.平时,经常能接触到涉及 HMM 的相关文章,一直没有仔细研究过,都是蜻蜓点水,因此,想花一点时间梳理下,加深理解,在此特别感谢 52nlp 对 HMM 的详细介绍. 考 虑下面交通灯的例子,一个序列可能是红-红/橙-绿-橙-红.这个序列可以画成一个状态机,不同的状态按照这个状态机互相交替,每一个

统计学习方法 李航---第10章 隐马尔可夫模型

第10章隐马尔可夫模型 隐马尔可夫模型(hidden Markov model, HMM)是可用于标注问题的统计学习模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型. 10.1 隐马尔可夫模型的基本概念 定义10.1 (隐马尔可夫模型) 隐马尔可夫模型是关于时序的概率模型,描述由一个隐藏的马尔可夫链随机生成不可观测的状态随机序列,再由各个状态生成一个观测而产生观测随机序列的过程.隐藏的马尔可夫链随机生成的状态的序列,称为状态序列(state sequence):每个状态生成一个观

【ML-13-1】隐马尔科夫模型HMM

[ML-13-1]隐马尔科夫模型HMM [ML-13-2]隐马尔科夫模型HMM--前向后向算法 [ML-13-3]隐马尔科夫模型HMM--Baum-Welch(鲍姆-韦尔奇) [ML-13-4]隐马尔科夫模型HMM--预测问题Viterbi(维特比)算法 目录 基础知识-马尔可夫链 HMM简介 HMM定义 HMM模型的三个基本问题 举例 一.基础知识-马尔可夫链 1.1 马尔可夫性质 设{X(t), t ∈ T}是一个随机过程,E为其状态空间,若对于任意的t1<t2< ...<tn<

隐马尔可夫模型(HMM:Hidden Markov Models)

理论部分转载自:http://blog.csdn.net/likelet/article/details/7056068 手动计算例子转载自:http://blog.sina.com.cn/s/blog_953f8a550100zh35.html 隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价值.平时,经常能接触到涉及 HMM 的相关文章,一直

统计学习方法笔记 -- 隐马尔可夫模型

参考,隐马尔可夫模型(HMM)攻略 首先看看确定的状态序列,这种状态序列中状态的变化是确定的,比如 红绿灯,一定是绿灯->红灯->黄灯,这样的状态序列 当然也有些不确定状态序列,比如 天气,今天是晴天,你不能确定明天也一定是晴天或雨天 于是我们用概率来表示这种不确定性,称为马尔可夫过程 (Markov Process),马尔可夫过程的阶数表示当前状态依赖于过去几个状态,出于简单考虑往往用一阶马尔可夫过程,即当前状态仅仅取决于前一个状态. 马尔可夫过程,由状态集合,初始状态和状态转移矩阵组成,

隐马尔科夫模型python实现简单拼音输入法

在网上看到一篇关于隐马尔科夫模型的介绍,觉得简直不能再神奇,又在网上找到大神的一篇关于如何用隐马尔可夫模型实现中文拼音输入的博客,无奈大神没给可以运行的代码,只能纯手动网上找到了结巴分词的词库,根据此训练得出隐马尔科夫模型,用维特比算法实现了一个简单的拼音输入法.githuh地址:https://github.com/LiuRoy/Pinyin_Demo 原理简介 隐马尔科夫模型 抄一段网上的定义: 隐马尔可夫模型 (Hidden Markov Model) 是一种统计模型,用来描述一个含有隐含

隐马尔可夫模型(一)

隐马尔可夫模型 隐马尔可夫模型(Hidden Markov Model,HMM)是一种统计模型,广泛应用在语音识别,词性自动标注,音字转换,概率文法等各个自然语言处理等应用领域.经过长期发展,尤其是在语音识别中的成功应用,使它成为一种通用的统计工具. 马尔可夫过程 先来看一个例子.假设几个月大的宝宝每天做三件事:玩(兴奋状态).吃(饥饿状态).睡(困倦状态),这三件事按下图所示的方向转移: 这就是一个简单的马尔可夫过程.需要注意的是,这和确定性系统不同,每个转移都是有概率的,宝宝的状态是经常变化

隐马尔可夫模型(HMM) [转]

隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价值.平时,经常能接触到涉及 HMM 的相关文章,一直没有仔细研究过,都是蜻蜓点水,因此,想花一点时间梳理下,加深理解,在此特别感谢 52nlp 对 HMM 的详细介绍. 考虑下面交通灯的例子,一个序列可能是红-红/橙-绿-橙-红.这个序列可以画成一个状态机,不同的状态按照这个状态机互相交替,每一个状

转:隐马尔可夫模型(HMM)攻略

隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价值.平时,经常能接触到涉及 HMM 的相关文章,一直没有仔细研究过,都是蜻蜓点水,因此,想花一点时间梳理下,加深理解,在此特别感谢 52nlp 对 HMM 的详细介绍. 考虑下面交通灯的例子,一个序列可能是红-红/橙-绿-橙-红.这个序列可以画成一个状态机,不同的状态按照这个状态机互相交替,每一个状

[转] 隐马尔可夫模型(HMM)攻略

隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价值.平时,经常能接触到涉及 HMM 的相关文章,一直没有仔细研究过,都是蜻蜓点水,因此,想花一点时间梳理下,加深理解,在此特别感谢  52nlp 对 HMM 的详细介绍. 考虑下面交通灯的例子,一个序列可能是红-红/橙-绿-橙-红.这个序列可以画成一个状态机,不同的状态按照这个状态机互相交替,每一个