poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)

Strange Way to Express Integers

Time Limit: 1000MS   Memory Limit: 131072K
Total Submissions: 9472   Accepted: 2873

Description

Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

Choose k different positive integers a1a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1a2, …, ak are properly chosen, m can be determined, then the pairs (airi) can be used to express m.

“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

Since Elina is new to programming, this problem is too difficult for her. Can you help her?

Input

The input contains multiple test cases. Each test cases consists of some lines.

  • Line 1: Contains the integer k.
  • Lines 2 ~ k + 1: Each contains a pair of integers airi (1 ≤ i ≤ k).

Output

Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

Sample Input

2
8 7
11 9

Sample Output

31

Hint

All integers in the input and the output are non-negative and can be represented by 64-bit integral types.

Source

POJ Monthly--2006.07.30, Static

参考:http://yzmduncan.iteye.com/blog/1323599/

直接翻译成代码。

 1 //156K    16MS    C++    1362B    2014-06-13 12:36:23
 2 #include<stdio.h>
 3 __int64 gcd(__int64 a,__int64 b)
 4 {
 5     return b?gcd(b,a%b):a;
 6 }
 7 __int64 extend_euclid(__int64 a,__int64 b,__int64 &x,__int64 &y)
 8 {
 9     if(b==0){
10         x=1;y=0;
11         return a;
12     }
13     __int64 d=extend_euclid(b,a%b,x,y);
14     __int64 t=x;
15     x=y;
16     y=t-a/b*y;
17     return d;
18 }
19 __int64 inv(__int64 a,__int64 n)
20 {
21     __int64 x,y;
22     __int64 t=extend_euclid(a,n,x,y);
23     if(t!=1) return -1;
24     return (x%n+n)%n;
25 }
26 bool merge(__int64 a1,__int64 n1,__int64 a2,__int64 n2,__int64 &a3,__int64 &n3)
27 {
28     __int64 d=gcd(n1,n2);
29     __int64 c=a2-a1;
30     if(c%d) return false;
31     c=(c%n2+n2)%n2;
32     c/=d;
33     n1/=d;
34     n2/=d;
35     c*=inv(n1,n2);
36     c%=n2;
37     c*=n1*d;
38     c+=a1;
39     n3=n1*n2*d;
40     a3=(c%n3+n3)%n3;
41     return true;
42 }
43 __int64 china_reminder2(int len,__int64 *a,__int64 *n)
44 {
45     __int64 a1=a[0],n1=n[0];
46     __int64 a2,n2;
47     for(int i=1;i<len;i++){
48          __int64 aa,nn;
49          a2=a[i],n2=n[i];
50          if(!merge(a1,n1,a2,n2,aa,nn)) return -1;
51          a1=aa;
52          n1=nn;
53     }
54     return (a1%n1+n1)%n1;
55 }
56 int main(void)
57 {
58     int n;
59     __int64 a[1005],b[1005];
60     while(scanf("%d",&n)!=EOF)
61     {
62         for(int i=0;i<n;i++)
63             scanf("%I64d %I64d",&a[i],&b[i]);
64         printf("%I64d\n",china_reminder2(n,b,a));
65     }
66     return 0;
67 }

poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)

时间: 2024-10-05 04:09:33

poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)的相关文章

poj 2891 Strange Way to Express Integers

http://poj.org/problem?id=2891 这道题的题意是:给你多个模性方程组:m mod ai=ri 求最小的m: 中国剩余定理 1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 #define ll long long 5 using namespace std; 6 7 ll gcd(ll a,ll b,ll &x,ll &y) 8 { 9 if(!

poj 2891 Strange Way to Express Integers (扩展gcd)

题目链接 题意:给k对数,每对ai, ri.求一个最小的m值,令m%ai = ri; 分析:由于ai并不是两两互质的, 所以不能用中国剩余定理. 只能两个两个的求. a1*x+r1=m=a2*y+r2联立得:a1*x-a2*y=r2-r1;设r=r2-r2; 互质的模线性方程组m=r[i](mod a[i]).两个方程可以合并为一个,新的a1为lcm(a1,a2), 新的r为关于当前两个方程的解m,然后再和下一个方程合并--.(r2-r1)不能被gcd(a1,a2)整除时无解. 怎么推出的看了好

hdu 1573 X问题 (非互质的中国剩余定理)

X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2980    Accepted Submission(s): 942 Problem Description 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], …, X mod

poj——2891 Strange Way to Express Integers

Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 16839   Accepted: 5625 Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is

POJ 2891 Strange Way to Express Integers 中国剩余定理MOD不互质数字方法

http://poj.org/problem?id=2891 711323 97935537 475421538 1090116118 2032082 120922929 951016541 15898 418373 161478614 149488440 1748022751 21618619576 810918992 241779667 1772616743 1953316358 125248280 2273149397 3849022001 2509433771 3885219405 35

poj 2891 Strange Way to Express Integers(中国剩余定理)

http://poj.org/problem?id=2891 题意:求解一个数x使得 x%8 = 7,x%11 = 9; 若x存在,输出最小整数解.否则输出-1: ps: 思路:这不是简单的中国剩余定理问题,由于输入的ai不一定两两互质,而中国剩余定理的条件是除数两两互质. 这是一般的模线性方程组,对于 X mod m1=r1 X mod m2=r2 ... ... ... X mod mn=rn 首先,我们看两个式子的情况 X mod m1=r1-----------------------(

poj 2891 Strange Way to Express Integers (解模线性方程组)

链接:poj 2891 题意:有一个数x,给定k组ai和ri,使得x%ai=ri 求x最小为多少 分析:求解模线性方程组 x = a1(mod m1) x = a2(mod m2) x = a3(mod m3) 先求解方程组前两项. x=m1*k1+a1=m2*k2+a2 -> m1*k1+m2*(-k2)=a2-a1 这个方程可以通过欧几里得求解出最小正整数的k1 则x=m1*k1+a1 显然x为两个方程的最小正整数解. 则这两个方程的通解为 X=x+k*LCM(m1,m2) -> X=x(

poj 2891 Strange Way to Express Integers 2012-09-05

http://poj.org/problem?id=2891 解线性模方程组. 比较坑爹,数据比较大,很容易溢出. 1 Program poj2891; 2 3 var m:int64; 4 5 a,r:array[1..30000000]of int64; 6 7 ans,x,y,lcm:int64; 8 9 10 Procedure init; 11 12 var i,j:longint; 13 14 begin 15 16 m:=0; 17 18 readln(m); 19 20 for

POJ 2891 Strange Way to Express Integers 中国剩余定理

裸题,上模版,,嘿嘿 #include<stdio.h> #include<string.h> #include<iostream> #include<algorithm> #include<math.h> #include<set> #include<queue> #include<vector> #include<map> using namespace std; #define ll __in