Project Euler :Problem 54 Poker hands

In the card game poker, a hand consists of five cards and are ranked, from lowest to highest, in the following way:

  • High Card: Highest value card.
  • One Pair: Two cards of the same value.
  • Two Pairs: Two different pairs.
  • Three of a Kind: Three cards of the same value.
  • Straight: All cards are consecutive values.
  • Flush: All cards of the same suit.
  • Full House: Three of a kind and a pair.
  • Four of a Kind: Four cards of the same value.
  • Straight Flush: All cards are consecutive values of same suit.
  • Royal Flush: Ten, Jack, Queen, King, Ace, in same suit.

The cards are valued in the order:

2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, Ace.

If two players have the same ranked hands then the rank made up of the highest value wins; for example, a pair of eights beats a pair of fives (see example 1 below). But if two ranks
tie, for example, both players have a pair of queens, then highest cards in each hand are compared (see example 4 below); if the highest cards tie then the next highest cards are compared, and so on.

Consider the following five hands dealt to two players:

Hand   Player 1   Player 2   Winner
1   5H 5C 6S 7S KD

Pair of Fives

  2C 3S 8S 8D TD

Pair of Eights

  Player 2
2   5D 8C 9S JS AC

Highest card Ace

  2C 5C 7D 8S QH

Highest card Queen

  Player 1
3   2D 9C AS AH AC

Three Aces

  3D 6D 7D TD QD

Flush with Diamonds

  Player 2
4   4D 6S 9H QH QC

Pair of Queens

Highest card Nine

  3D 6D 7H QD QS

Pair of Queens

Highest card Seven

  Player 1
5   2H 2D 4C 4D 4S

Full House

With Three Fours

  3C 3D 3S 9S 9D

Full House

with Three Threes

  Player 1

The file, poker.txt, contains one-thousand
random hands dealt to two players. Each line of the file contains ten cards (separated by a single space): the first five are Player 1‘s cards and the last five are Player 2‘s cards. You can assume that all hands are valid (no invalid characters or repeated
cards), each player‘s hand is in no specific order, and in each hand there is a clear winner.

How many hands does Player 1 win?

果然不适合做动脑子的题目。全然没有耐心(╯‵□′)╯︵┻━┻

每轮每一个人的牌都用两个数组来存,由于这题目比較的东西要么是牌值要么就是推断全部牌是不是同一个花色。

对于上面的是十个较项目,从下往上进行比較。

#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <map>
#include <algorithm>
using namespace std;

bool same_suit(char s[5])
{
	if (s[0] == s[1] && s[1] == s[2] && s[2] == s[3] && s[3] == s[4])
		return true;
	else
		return false;
}

int cv(char a)
{
	if (a >= '2'&&a <= '9')
		return a - '2';
	else if (a == 'T')
		return 8;
	else if (a == 'J')
		return 9;
	else if (a == 'Q')
		return 10;
	else if (a == 'K')
		return 11;
	else
		return 12;
}

void ch_int(char a[5][2],int ac[5])
{
	for (int i = 0; i < 5; i++)
	{
		int tmp = cv(a[i][0]);
		ac[i] = tmp;
	}
}

int high_card(int ac[5],char s[5])
{
	return ac[4];
}

int one_pair(int ac[5],char s[5])
{
	int count = 0;
	for (int i = 5; i >= 1; i--)
	{
		if (ac[i] == ac[i - 1])
			return ac[i];
	}
	return -1;
}

int two_pair(int ac[5],char s[5])
{
	vector<int>res;
	int count = 0;
	for (int i = 1; i < 5; i++)
	{
		if (ac[i] == ac[i - 1])
		{
			res.push_back(ac[i]);
			i++;
		}
	}
	if (res.size() == 2)
		return res[0] + res[1] * 13;
	else
		return -1;
}

int three_kind(int ac[5],char s[5])
{
	int count = 0;
	for (int i = 2; i < 5; i++)
	{
		if (ac[i - 2] == ac[i - 1] && ac[i - 1] == ac[i])
			return ac[i - 2];
	}
	return -1;
}

int straight(int ac[5],char s[5])
{
	if (ac[0] == 0 && ac[1] == 1 && ac[2] == 2 && ac[3] == 3 && ac[4] == 12)
		return ac[3];
	for (int i = 1; i < 5; i++)
	{
		if (ac[i] != ac[i - 1] + 1)
			return -1;
	}
	return ac[4];
}

int flush(int ac[5],char s[5])
{
	if (same_suit(s))
		return ac[4];
	return -1;
}

int full_house(int ac[5],char s[5])
{
	if (ac[0] == ac[1] && ac[2] == ac[3] && ac[3] == ac[4])
		return ac[0] + ac[4] * 13;
	if (ac[0] == ac[1] && ac[1] == ac[2] && ac[3] == ac[4])
		return ac[4] + ac[0] * 13;
	return -1;
}

int four_kind(int ac[5],char s[5])
{
	if ((ac[0] == ac[1] && ac[1] == ac[2] && ac[2] == ac[3]) || (ac[1] == ac[2] && ac[2] == ac[3] && ac[3] == ac[4]))
		return ac[2];
	return -1;
}

int strai_flush(int ac[5],char s[5])
{
	int tmp = straight(ac,s);
	if (same_suit(s) && tmp >= 0)
		return ac[4];
	return -1;
}

int royal_flush(int ac[5], char s[5])
{
	int tmp = strai_flush(ac, s);
	if (tmp >= 0 && ac[4] == 12)
		return ac[4];
	return -1;
}

int compareHighest(int ac[5], int bc[5])
{
	for (int i = 4; i >= 0; i--)
	{
		if (ac[i] > bc[i])
			return 1;
		if (ac[i] < bc[i])
			return 2;
	}
}

int comp(int ac[5], int bc[5], char as[5], char bs[5])
{
	int(*compareList[10])(int *, char *) = { high_card, one_pair, two_pair, three_kind, straight, flush, full_house, four_kind, strai_flush, royal_flush };
	for (int i = 9; i >= 0; i--)
	{
		int pa = (*compareList[i])(ac, as);
		int pb = (*compareList[i])(bc, bs);

		if (pa != -1 || pb != -1)
		{
			if (pa == -1)
				return 2;
			if (pb == -1)
				return 1;
			if (pa > pb)
				return 1;
			if (pa < pb)
				return 2;
			if (pa == pb)
				return compareHighest(ac, bc);
		}

	}
}

int main()
{
	ifstream input;
	input.open("poker.txt");
	string s;
	int ct = 0;
	while (getline(input, s))
	{
		char a[5][2];
		char b[5][2];
		int count = 0;
		int flag = 0;
		for (int i = 0; i < s.length(); i++)
		{
			if (s[i] == ' ')
			{
				count++;
				if (count>4)
				{
					if (flag == 0)
						flag = 1;
					count -= 5;
				}
			}
			else
			{
				if (flag == 0)
				{
					a[count][0] = s[i++];
					a[count][1] = s[i];
				}
				else
				{
					b[count][0] = s[i++];
					b[count][1] = s[i];
				}
			}
		}

		int ac[5], bc[5];
		char as[5], bs[5];
		for (int i = 0; i < 5; i++)
		{
			a[i][1] = as[i];
			b[i][1] = bs[i];
		}
		ch_int(a, ac);
		ch_int(b, bc);
		sort(ac, ac + 5);
		sort(bc, bc + 5);

		if (comp(ac, bc, as, bs) == 1)
			ct++;
	}
	cout << ct << endl;
	system("pause");
	return 0;
}

然后学C++都好几年了才知道有函数指针数组这样的奇妙好用的东东,感动哭。

时间: 2024-11-05 16:25:35

Project Euler :Problem 54 Poker hands的相关文章

Project Euler:Problem 46 Goldbach&#39;s other conjecture

It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a prime and twice a square. 9 = 7 + 2×12 15 = 7 + 2×22 21 = 3 + 2×32 25 = 7 + 2×32 27 = 19 + 2×22 33 = 31 + 2×12 It turns out that the conjecture was f

Project Euler:Problem 40 Champernowne&#39;s constant

An irrational decimal fraction is created by concatenating the positive integers: 0.123456789101112131415161718192021... It can be seen that the 12th digit of the fractional part is 1. If dn represents the nth digit of the fractional part, find the v

Project Euler:Problem 90 Cube digit pairs

Each of the six faces on a cube has a different digit (0 to 9) written on it; the same is done to a second cube. By placing the two cubes side-by-side in different positions we can form a variety of 2-digit numbers. For example, the square number 64

Project Euler:Problem 89 Roman numerals

For a number written in Roman numerals to be considered valid there are basic rules which must be followed. Even though the rules allow some numbers to be expressed in more than one way there is always a "best" way of writing a particular number

Project Euler:Problem 67 Maximum path sum II

By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. 3 7 4 2 4 6 8 5 9 3 That is, 3 + 7 + 4 + 9 = 23. Find the maximum total from top to bottom in triangle.txt (righ

Project Euler:Problem 69 Totient maximum

Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number of numbers less than n which are relatively prime to n. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, φ(9

Project Euler:Problem 78 Coin partitions

Let p(n) represent the number of different ways in which n coins can be separated into piles. For example, five coins can be separated into piles in exactly seven different ways, so p(5)=7. OOOOO OOOO   O OOO   OO OOO   O   O OO   OO   O OO   O   O 

Project Euler:Problem 18 Maximum path sum I

By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. 3 7 4 2 4 6 8 5 9 3 That is, 3 + 7 + 4 + 9 = 23. Find the maximum total from top to bottom of the triangle below

Project Euler:Problem 55 Lychrel numbers

If we take 47, reverse and add, 47 + 74 = 121, which is palindromic. Not all numbers produce palindromes so quickly. For example, 349 + 943 = 1292, 1292 + 2921 = 4213 4213 + 3124 = 7337 That is, 349 took three iterations to arrive at a palindrome. Al