Codeforces Round #181 (Div. 2)C

用lucas定理, p必须是素数

对于单独的C(n, m) mod p,已知C(n, m) mod p = n!/(m!(n - m)!) mod p。显然除法取模,这里要用到m!(n-m)!的逆元。

根据费马小定理:

已知(a, p) = 1,则 ap-1 ≡ 1 (mod p),  所以 a*ap-2 ≡ 1 (mod p)。

也就是 (m!(n-m)!)的逆元为 (m!(n-m)!)p-2 ;

所以C(n, m) mod p = n! * (m! * (n - m)! )^(p-2)%mod

中间用快速幂取余

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<cassert>
#include<iomanip>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define C 0.5772156649
#define pi acos(-1.0)
#define ll long long
#define mod 1000000007
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#pragma comment(linker, "/STACK:1024000000,1024000000")

using namespace std;

const double g=10.0,eps=1e-7;
const int N=1000000+10,maxn=300000+10,inf=0x3f3f3f;

ll fac[N],a,b;
bool ok(ll x)
{
    while(x){
        if(x%10!=a&&x%10!=b)return 0;
        x/=10;
    }
    return 1;
}
ll quick(ll a,ll b)
{
    ll ans=1;
    while(b){
        if(b&1)ans=ans*a%mod;
        a=a*a%mod;
        b/=2;
    }
    return ans;
}
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    fac[0]=fac[1]=1;
    for(ll i=2;i<N;i++)
        fac[i]=fac[i-1]*i%mod;
    ll n,ans=0;
    cin>>a>>b>>n;
    for(ll i=0;i<=n;i++)
        if(ok(a*i+(n-i)*b))
            ans=(ans+fac[n]*quick(fac[i]*fac[n-i]%mod,mod-2)%mod)%mod;
    cout<<ans<<endl;
    return 0;
}
/********************

********************/

时间: 2024-10-11 04:53:05

Codeforces Round #181 (Div. 2)C的相关文章

Codeforces Round #181 (Div. 2)

B. Coach 题意:已知有n个学生,编号从1到n,其中n是3的倍数,老师需要把这n个学生分成3人的小组.若第i个学生要和第j个学生一组,那么第j个学生一定也想和第i个学生一组(当然第i或者第j个学生也可能和其他第k个学生一组).老师分组的时候需要满足学生的要求.若能按要求实现分组,则输出各组学生的编号:否则输出-1: 分析:首先需要找出有要求的学生进行深度优先遍历,若从某一个学生开始遍历长度大于3即按学生的要求编成的某一组的学生个数超过3个,则输出-1:若正好3个,则依次输出这3个学生的编号

Codeforces Round #279 (Div. 2) ABCD

Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems # Name     A Team Olympiad standard input/output 1 s, 256 MB  x2377 B Queue standard input/output 2 s, 256 MB  x1250 C Hacking Cypher standard input/output 1 s, 256 MB  x740 D Chocolate standard input/

Codeforces Round #428 (Div. 2)

Codeforces Round #428 (Div. 2) A    看懂题目意思就知道做了 #include<bits/stdc++.h> using namespace std; #pragma comment(linker, "/STACK:102400000,102400000") #define rep(i,a,b) for (int i=a; i<=b; ++i) #define per(i,b,a) for (int i=b; i>=a; --i

Codeforces Round #424 (Div. 2) D. Office Keys(dp)

题目链接:Codeforces Round #424 (Div. 2) D. Office Keys 题意: 在一条轴上有n个人,和m个钥匙,门在s位置. 现在每个人走单位距离需要单位时间. 每个钥匙只能被一个人拿. 求全部的人拿到钥匙并且走到门的最短时间. 题解: 显然没有交叉的情况,因为如果交叉的话可能不是最优解. 然后考虑dp[i][j]表示第i个人拿了第j把钥匙,然后 dp[i][j]=max(val(i,j),min(dp[i-1][i-1~j]))   val(i,j)表示第i个人拿

Codeforces Round #424 (Div. 2) C. Jury Marks(乱搞)

题目链接:Codeforces Round #424 (Div. 2) C. Jury Marks 题意: 给你一个有n个数序列,现在让你确定一个x,使得x通过挨着加这个序列的每一个数能出现所有给出的k个数. 问合法的x有多少个.题目保证这k个数完全不同. 题解: 显然,要将这n个数求一下前缀和,并且排一下序,这样,能出现的数就可以表示为x+a,x+b,x+c了. 这里 x+a,x+b,x+c是递增的.这里我把这个序列叫做A序列 然后对于给出的k个数,我们也排一下序,这里我把它叫做B序列,如果我

[Codeforces] Round #352 (Div. 2)

人生不止眼前的狗血,还有远方的狗带 A题B题一如既往的丝帛题 A题题意:询问按照12345678910111213...的顺序排列下去第n(n<=10^3)个数是多少 题解:打表,输出 1 #include<bits/stdc++.h> 2 using namespace std; 3 int dig[10],A[1005]; 4 int main(){ 5 int aa=0; 6 for(int i=1;;i++){ 7 int x=i,dd=0; 8 while(x)dig[++dd

Codeforces Round #273 (Div. 2)

Codeforces Round #273 (Div. 2) 题目链接 A:签到,仅仅要推断总和是不是5的倍数就可以,注意推断0的情况 B:最大值的情况是每一个集合先放1个,剩下都丢到一个集合去,最小值是尽量平均去分 C:假如3种球从小到大是a, b, c,那么假设(a + b) 2 <= c这个比較明显答案就是a + b了.由于c肯定要剩余了,假设(a + b)2 > c的话,就肯定能构造出最优的(a + b + c) / 3,由于肯定能够先拿a和b去消除c,而且控制a和b成2倍关系或者消除

Codeforces Round #339 (Div. 2) B. Gena&#39;s Code

B. Gena's Code It's the year 4527 and the tanks game that we all know and love still exists. There also exists Great Gena's code, written in 2016. The problem this code solves is: given the number of tanks that go into the battle from each country, f

Codeforces Round #315 (Div. 1)

A. Primes or Palindromes? time limit per test 3 seconds memory limit per test 256 megabytes input standard input output standard output Rikhail Mubinchik believes that the current definition of prime numbers is obsolete as they are too complex and un