Kafka高性能架构之道

宏观架构层面

利用Partition实现并行处理

Partition提供并行处理的能力

Kafka是一个Pub-Sub的消息系统,无论是发布还是订阅,都须指定Topic。如《Kafka设计解析(一)- Kafka背景及架构介绍》一文所述,Topic只是一个逻辑的概念。每个Topic都包含一个或多个Partition,不同Partition可位于不同节点。同时Partition在物理上对应一个本地文件夹,每个Partition包含一个或多个Segment,每个Segment包含一个数据文件和一个与之对应的索引文件。在逻辑上,可以把一个Partition当作一个非常长的数组,可通过这个“数组”的索引(offset)去访问其数据。

一方面,由于不同Partition可位于不同机器,因此可以充分利用集群优势,实现机器间的并行处理。另一方面,由于Partition在物理上对应一个文件夹,即使多个Partition位于同一个节点,也可通过配置让同一节点上的不同Partition置于不同的disk drive上,从而实现磁盘间的并行处理,充分发挥多磁盘的优势。

利用多磁盘的具体方法是,将不同磁盘mount到不同目录,然后在server.properties中,将log.dirs设置为多目录(用逗号分隔)。Kafka会自动将所有Partition尽可能均匀分配到不同目录也即不同目录(也即不同disk)上。

注:虽然物理上最小单位是Segment,但Kafka并不提供同一Partition内不同Segment间的并行处理。因为对于写而言,每次只会写Partition内的一个Segment,而对于读而言,也只会顺序读取同一Partition内的不同Segment。

Partition是最小并发粒度

如同《Kafka设计解析(四)- Kafka Consumer设计解析》一文所述,多Consumer消费同一个Topic时,同一条消息只会被同一Consumer Group内的一个Consumer所消费。而数据并非按消息为单位分配,而是以Partition为单位分配,也即同一个Partition的数据只会被一个Consumer所消费(在不考虑Rebalance的前提下)。

如果Consumer的个数多于Partition的个数,那么会有部分Consumer无法消费该Topic的任何数据,也即当Consumer个数超过Partition后,增加Consumer并不能增加并行度。

简而言之,Partition个数决定了可能的最大并行度。如下图所示,由于Topic 2只包含3个Partition,故group2中的Consumer 3、Consumer 4、Consumer 5 可分别消费1个Partition的数据,而Consumer 6消费不到Topic 2的任何数据。

以Spark消费Kafka数据为例,如果所消费的Topic的Partition数为N,则有效的Spark最大并行度也为N。即使将Spark的Executor数设置为N+M,最多也只有N个Executor可同时处理该Topic的数据。

ISR实现可用性与数据一致性的动态平衡

CAP理论

CAP理论是指,分布式系统中,一致性、可用性和分区容忍性最多只能同时满足两个。

一致性

  • 通过某个节点的写操作结果对后面通过其它节点的读操作可见
  • 如果更新数据后,并发访问情况下后续读操作可立即感知该更新,称为强一致性
  • 如果允许之后部分或者全部感知不到该更新,称为弱一致性
  • 若在之后的一段时间(通常该时间不固定)后,一定可以感知到该更新,称为最终一致性

可用性

  • 任何一个没有发生故障的节点必须在有限的时间内返回合理的结果

分区容忍性

  • 部分节点宕机或者无法与其它节点通信时,各分区间还可保持分布式系统的功能

一般而言,都要求保证分区容忍性。所以在CAP理论下,更多的是需要在可用性和一致性之间做权衡。

常用数据复制及一致性方案

Master-Slave

  • RDBMS的读写分离即为典型的Master-Slave方案
  • 同步复制可保证强一致性但会影响可用性
  • 异步复制可提供高可用性但会降低一致性

WNR

  • 主要用于去中心化的分布式系统中。DynamoDB与Cassandra即采用此方案或其变种
  • N代表总副本数,W代表每次写操作要保证的最少写成功的副本数,R代表每次读至少要读取的副本数
  • 当W+R>N时,可保证每次读取的数据至少有一个副本拥有最新的数据
  • 多个写操作的顺序难以保证,可能导致多副本间的写操作顺序不一致。Dynamo通过向量时钟保证最终一致性

Paxos及其变种

  • Google的Chubby,Zookeeper的原子广播协议(Zab),RAFT等

基于ISR的数据复制方案
如《Kafka High Availability(上)》一文所述,Kafka的数据复制是以Partition为单位的。而多个备份间的数据复制,通过Follower向Leader拉取数据完成。从一这点来讲,Kafka的数据复制方案接近于上文所讲的Master-Slave方案。不同的是,Kafka既不是完全的同步复制,也不是完全的异步复制,而是基于ISR的动态复制方案。

ISR,也即In-sync Replica。每个Partition的Leader都会维护这样一个列表,该列表中,包含了所有与之同步的Replica(包含Leader自己)。每次数据写入时,只有ISR中的所有Replica都复制完,Leader才会将其置为Commit,它才能被Consumer所消费。

这种方案,与同步复制非常接近。但不同的是,这个ISR是由Leader动态维护的。如果Follower不能紧“跟上”Leader,它将被Leader从ISR中移除,待它又重新“跟上”Leader后,会被Leader再次加加ISR中。每次改变ISR后,Leader都会将最新的ISR持久化到Zookeeper中。

至于如何判断某个Follower是否“跟上”Leader,不同版本的Kafka的策略稍微有些区别。

  • 对于0.8.*版本,如果Follower在replica.lag.time.max.ms时间内未向Leader发送Fetch请求(也即数据复制请求),则Leader会将其从ISR中移除。如果某Follower持续向Leader发送Fetch请求,但是它与Leader的数据差距在replica.lag.max.messages以上,也会被Leader从ISR中移除。
  • 从0.9.0.0版本开始,replica.lag.max.messages被移除,故Leader不再考虑Follower落后的消息条数。另外,Leader不仅会判断Follower是否在replica.lag.time.max.ms时间内向其发送Fetch请求,同时还会考虑Follower是否在该时间内与之保持同步。
  • 0.10.* 版本的策略与0.9.*版一致

对于0.8.*版本的replica.lag.max.messages参数,很多读者曾留言提问,既然只有ISR中的所有Replica复制完后的消息才被认为Commit,那为何会出现Follower与Leader差距过大的情况。原因在于,Leader并不需要等到前一条消息被Commit才接收后一条消息。事实上,Leader可以按顺序接收大量消息,最新的一条消息的Offset被记为High Wartermark。而只有被ISR中所有Follower都复制过去的消息才会被Commit,Consumer只能消费被Commit的消息。由于Follower的复制是严格按顺序的,所以被Commit的消息之前的消息肯定也已经被Commit过。换句话说,High Watermark标记的是Leader所保存的最新消息的offset,而Commit Offset标记的是最新的可被消费的(已同步到ISR中的Follower)消息。而Leader对数据的接收与Follower对数据的复制是异步进行的,因此会出现Commit Offset与High Watermark存在一定差距的情况。0.8.*版本中replica.lag.max.messages限定了Leader允许的该差距的最大值。

Kafka基于ISR的数据复制方案原理如下图所示。

如上图所示,在第一步中,Leader A总共收到3条消息,故其high watermark为3,但由于ISR中的Follower只同步了第1条消息(m1),故只有m1被Commit,也即只有m1可被Consumer消费。此时Follower B与Leader A的差距是1,而Follower C与Leader A的差距是2,均未超过默认的replica.lag.max.messages,故得以保留在ISR中。在第二步中,由于旧的Leader A宕机,新的Leader B在replica.lag.time.max.ms时间内未收到来自A的Fetch请求,故将A从ISR中移除,此时ISR={B,C}。同时,由于此时新的Leader B中只有2条消息,并未包含m3(m3从未被任何Leader所Commit),所以m3无法被Consumer消费。第四步中,Follower A恢复正常,它先将宕机前未Commit的所有消息全部删除,然后从最后Commit过的消息的下一条消息开始追赶新的Leader B,直到它“赶上”新的Leader,才被重新加入新的ISR中。

使用ISR方案的原因

  • 由于Leader可移除不能及时与之同步的Follower,故与同步复制相比可避免最慢的Follower拖慢整体速度,也即ISR提高了系统可用性。
  • ISR中的所有Follower都包含了所有Commit过的消息,而只有Commit过的消息才会被Consumer消费,故从Consumer的角度而言,ISR中的所有Replica都始终处于同步状态,从而与异步复制方案相比提高了数据一致性。
  • ISR可动态调整,极限情况下,可以只包含Leader,极大提高了可容忍的宕机的Follower的数量。与Majority Quorum方案相比,容忍相同个数的节点失败,所要求的总节点数少了近一半。

ISR相关配置说明

  • Broker的min.insync.replicas参数指定了Broker所要求的ISR最小长度,默认值为1。也即极限情况下ISR可以只包含Leader。但此时如果Leader宕机,则该Partition不可用,可用性得不到保证。
  • 只有被ISR中所有Replica同步的消息才被Commit,但Producer发布数据时,Leader并不需要ISR中的所有Replica同步该数据才确认收到数据。Producer可以通过acks参数指定最少需要多少个Replica确认收到该消息才视为该消息发送成功。acks的默认值是1,即Leader收到该消息后立即告诉Producer收到该消息,此时如果在ISR中的消息复制完该消息前Leader宕机,那该条消息会丢失。而如果将该值设置为0,则Producer发送完数据后,立即认为该数据发送成功,不作任何等待,而实际上该数据可能发送失败,并且Producer的Retry机制将不生效。更推荐的做法是,将acks设置为all或者-1,此时只有ISR中的所有Replica都收到该数据(也即该消息被Commit),Leader才会告诉Producer该消息发送成功,从而保证不会有未知的数据丢失。

具体实现层面

高效使用磁盘

顺序写磁盘

根据《一些场景下顺序写磁盘快于随机写内存》所述,将写磁盘的过程变为顺序写,可极大提高对磁盘的利用率。

Kafka的整个设计中,Partition相当于一个非常长的数组,而Broker接收到的所有消息顺序写入这个大数组中。同时Consumer通过Offset顺序消费这些数据,并且不删除已经消费的数据,从而避免了随机写磁盘的过程。

由于磁盘有限,不可能保存所有数据,实际上作为消息系统Kafka也没必要保存所有数据,需要删除旧的数据。而这个删除过程,并非通过使用“读-写”模式去修改文件,而是将Partition分为多个Segment,每个Segment对应一个物理文件,通过删除整个文件的方式去删除Partition内的数据。这种方式清除旧数据的方式,也避免了对文件的随机写操作。

通过如下代码可知,Kafka删除Segment的方式,是直接删除Segment对应的整个log文件和整个index文件而非删除文件中的部分内容。


/**

* Delete this log segment from the filesystem.

*

* @throws KafkaStorageException if the delete fails.

*/

def delete() {

val deletedLog = log.delete()

val deletedIndex = index.delete()

val deletedTimeIndex = timeIndex.delete()

if(!deletedLog && log.file.exists)

throw new KafkaStorageException("Delete of log " + log.file.getName + " failed.")

if(!deletedIndex && index.file.exists)

throw new KafkaStorageException("Delete of index " + index.file.getName + " failed.")

if(!deletedTimeIndex && timeIndex.file.exists)

throw new KafkaStorageException("Delete of time index " + timeIndex.file.getName + " failed.")

}

充分利用Page Cache

使用Page Cache的好处如下

  • I/O Scheduler会将连续的小块写组装成大块的物理写从而提高性能
  • I/O Scheduler会尝试将一些写操作重新按顺序排好,从而减少磁盘头的移动时间
  • 充分利用所有空闲内存(非JVM内存)。如果使用应用层Cache(即JVM堆内存),会增加GC负担
  • 读操作可直接在Page Cache内进行。如果消费和生产速度相当,甚至不需要通过物理磁盘(直接通过Page Cache)交换数据
  • 如果进程重启,JVM内的Cache会失效,但Page Cache仍然可用

Broker收到数据后,写磁盘时只是将数据写入Page Cache,并不保证数据一定完全写入磁盘。从这一点看,可能会造成机器宕机时,Page Cache内的数据未写入磁盘从而造成数据丢失。但是这种丢失只发生在机器断电等造成操作系统不工作的场景,而这种场景完全可以由Kafka层面的Replication机制去解决。如果为了保证这种情况下数据不丢失而强制将Page Cache中的数据Flush到磁盘,反而会降低性能。也正因如此,Kafka虽然提供了flush.messagesflush.ms两个参数将Page Cache中的数据强制Flush到磁盘,但是Kafka并不建议使用。

如果数据消费速度与生产速度相当,甚至不需要通过物理磁盘交换数据,而是直接通过Page Cache交换数据。同时,Follower从Leader Fetch数据时,也可通过Page Cache完成。下图为某Partition的Leader节点的网络/磁盘读写信息。

从上图可以看到,该Broker每秒通过网络从Producer接收约35MB数据,虽然有Follower从该Broker Fetch数据,但是该Broker基本无读磁盘。这是因为该Broker直接从Page Cache中将数据取出返回给了Follower。

支持多Disk Drive

Broker的log.dirs配置项,允许配置多个文件夹。如果机器上有多个Disk Drive,可将不同的Disk挂载到不同的目录,然后将这些目录都配置到log.dirs里。Kafka会尽可能将不同的Partition分配到不同的目录,也即不同的Disk上,从而充分利用了多Disk的优势。

零拷贝

Kafka中存在大量的网络数据持久化到磁盘(Producer到Broker)和磁盘文件通过网络发送(Broker到Consumer)的过程。这一过程的性能直接影响Kafka的整体吞吐量。

传统模式下的四次拷贝与四次上下文切换

以将磁盘文件通过网络发送为例。传统模式下,一般使用如下伪代码所示的方法先将文件数据读入内存,然后通过Socket将内存中的数据发送出去。


buffer = File.read

Socket.send(buffer)

这一过程实际上发生了四次数据拷贝。首先通过系统调用将文件数据读入到内核态Buffer(DMA拷贝),然后应用程序将内存态Buffer数据读入到用户态Buffer(CPU拷贝),接着用户程序通过Socket发送数据时将用户态Buffer数据拷贝到内核态Buffer(CPU拷贝),最后通过DMA拷贝将数据拷贝到NIC Buffer。同时,还伴随着四次上下文切换,如下图所示。

sendfile和transferTo实现零拷贝

Linux 2.4+内核通过sendfile系统调用,提供了零拷贝。数据通过DMA拷贝到内核态Buffer后,直接通过DMA拷贝到NIC Buffer,无需CPU拷贝。这也是零拷贝这一说法的来源。除了减少数据拷贝外,因为整个读文件-网络发送由一个sendfile调用完成,整个过程只有两次上下文切换,因此大大提高了性能。零拷贝过程如下图所示。

从具体实现来看,Kafka的数据传输通过TransportLayer来完成,其子类PlaintextTransportLayer通过Java NIO的FileChannel的transferTotransferFrom方法实现零拷贝,如下所示。


@Override

public long transferFrom(FileChannel fileChannel, long position, long count) throws IOException {

return fileChannel.transferTo(position, count, socketChannel);

}

注: transferTotransferFrom并不保证一定能使用零拷贝。实际上是否能使用零拷贝与操作系统相关,如果操作系统提供sendfile这样的零拷贝系统调用,则这两个方法会通过这样的系统调用充分利用零拷贝的优势,否则并不能通过这两个方法本身实现零拷贝。

减少网络开销

批处理

批处理是一种常用的用于提高I/O性能的方式。对Kafka而言,批处理既减少了网络传输的Overhead,又提高了写磁盘的效率。

Kafka 0.8.1及以前的Producer区分同步Producer和异步Producer。同步Producer的send方法主要分两种形式。一种是接受一个KeyedMessage作为参数,一次发送一条消息。另一种是接受一批KeyedMessage作为参数,一次性发送多条消息。而对于异步发送而言,无论是使用哪个send方法,实现上都不会立即将消息发送给Broker,而是先存到内部的队列中,直到消息条数达到阈值或者达到指定的Timeout才真正的将消息发送出去,从而实现了消息的批量发送。

Kafka 0.8.2开始支持新的Producer API,将同步Producer和异步Producer结合。虽然从send接口来看,一次只能发送一个ProducerRecord,而不能像之前版本的send方法一样接受消息列表,但是send方法并非立即将消息发送出去,而是通过batch.sizelinger.ms控制实际发送频率,从而实现批量发送。

由于每次网络传输,除了传输消息本身以外,还要传输非常多的网络协议本身的一些内容(称为Overhead),所以将多条消息合并到一起传输,可有效减少网络传输的Overhead,进而提高了传输效率。

零拷贝章节的图中可以看到,虽然Broker持续从网络接收数据,但是写磁盘并非每秒都在发生,而是间隔一段时间写一次磁盘,并且每次写磁盘的数据量都非常大(最高达到718MB/S)。

数据压缩降低网络负载

Kafka从0.7开始,即支持将数据压缩后再传输给Broker。除了可以将每条消息单独压缩然后传输外,Kafka还支持在批量发送时,将整个Batch的消息一起压缩后传输。数据压缩的一个基本原理是,重复数据越多压缩效果越好。因此将整个Batch的数据一起压缩能更大幅度减小数据量,从而更大程度提高网络传输效率。

Broker接收消息后,并不直接解压缩,而是直接将消息以压缩后的形式持久化到磁盘。Consumer Fetch到数据后再解压缩。因此Kafka的压缩不仅减少了Producer到Broker的网络传输负载,同时也降低了Broker磁盘操作的负载,也降低了Consumer与Broker间的网络传输量,从而极大得提高了传输效率,提高了吞吐量。

高效的序列化方式

Kafka消息的Key和Payload(或者说Value)的类型可自定义,只需同时提供相应的序列化器和反序列化器即可。因此用户可以通过使用快速且紧凑的序列化-反序列化方式(如Avro,Protocal Buffer)来减少实际网络传输和磁盘存储的数据规模,从而提高吞吐率。这里要注意,如果使用的序列化方法太慢,即使压缩比非常高,最终的效率也不一定高。

版权声明:本文版权由木秀林网所有,转载请保留链接:Kafka设计解析(六)- Kafka高性能架构之道

时间: 2024-07-31 06:18:15

Kafka高性能架构之道的相关文章

一篇文章,读懂Netty的高性能架构之道

一篇文章,读懂Netty的高性能架构之道 Netty是由JBOSS提供的一个java开源框架,是一个高性能.异步事件驱动的NIO框架,它提供了对TCP.UDP和文件传输的支持,作为一个异步NIO框架,Netty的所有IO操作都是异步非阻塞的,通过Future-Listener机制,用户可以方便的主动获取或者通过通知机制获得IO操作结果. 作为当前最流行的NIO框架,Netty在互联网领域.大数据分布式计算领域.游戏行业.通信行业等获得了广泛的应用,一些业界著名的开源组件也基于Netty的NIO框

读懂Netty的高性能架构之道

Netty是一个高性能.异步事件驱动的NIO框架,它提供了对TCP.UDP和文件传输的支持,作为一个异步NIO框架,Netty的所有IO操作都是异步非阻塞的,通过Future-Listener机制,用户可以方便的主动获取或者通过通知机制获得IO操作结果. 作为当前最流行的NIO框架,Netty在互联网领域.大数据分布式计算领域.游戏行业.通信行业等获得了广泛的应用,一些业界著名的开源组件也基于Netty的NIO框架构建. 为什么选择Netty Netty是业界最流行的NIO框架之一,它的健壮性.

Kafka 高性能吞吐揭秘

Kafka 高性能吞吐揭秘 Kafka作为时下最流行的开源消息系统,被广泛地应用在数据缓冲.异步通信.汇集日志.系统解耦等方面.相比较于RocketMQ等其他常见消息系统,Kafka在保障了大部分功能特性的同时,还提供了超一流的读写性能.本文将针对Kafka性能方面进行简单分析,首先简单介绍一下Kafka的架构和涉及到的名词:Topic:用于划分Message的逻辑概念,一个Topic可以分布在多个Broker上.Partition:是Kafka中横向扩展和一切并行化的基础,每个Topic都至少

MongoDB -> kafka 高性能实时同步(采集)mongodb数据到kafka解决方案

写这篇博客的目的 让更多的人了解 阿里开源的MongoShake可以很好满足mongodb到kafka高性能高可用实时同步需求(项目地址:https://github.com/alibaba/MongoShake,下载地址:https://github.com/alibaba/MongoShake/releases).至此博客就结束了,你可以愉快地啃这个项目了.还是一起来看一下官方的描述: MongoShake is a universal data replication platform b

大型网站技术架构(四)--网站的高性能架构

大型网站技术架构(一)--大型网站架构演化 大型网站技术架构(二)--架构模式 大型网站技术架构(三)--架构核心要素 网站性能是客观的指标,可以具体体现到响应时间.吞吐量.并发数.性能计数器等技术指标. 1.性能测试指标 1.1 响应时间 指应用执行一个操作需要的时间,指从发出请求到最后收到响应数据所需要的时间.如下列出了系统常用的操作响应时间表. 操作 响应时间 打开一个网站 几秒 数据库查询一条记录(有索引) 十几毫秒 机械磁盘一次寻址定位 4毫秒 从机械磁盘顺序读取1M数据 2毫秒 从S

大型网站技术架构(2):架构要素和高性能架构

上一篇我们把整个架构演变过程大致说了一下,这次我们来说说从哪方面进行考虑设计 为了使网站的能够应对高并发访问,海量数据处理,高可靠运行等一系列问题,我们可以选择横向或纵向两个方向来入手 基本思路 首先可以对整个架构进行分层,一般可以分为 应用层,服务层,数据层:实践中,大的分层结构中还可以继续分层,比如 应用层 还可以继续分为 视图层 和 业务逻辑层,服务层也可以继续细分为 数据接口层 逻辑处理层 等 通过分层,我们把一个庞大的系统切分为不同的部分,便于分工开发和维护:各层之间相互有一定的独立性

读书笔记4瞬时相应网站的高性能架构

一.概述 性能测试是性能优化的前提和基础.也是性能优化检查和度量的标准.不同的视角下网站的性能有不同的标准,也有不同的优化手段 二.性能分类 用户视觉的性能 过程:用户情况à网站通讯时间à处理时间à用户计算机浏览器解析 优化手段通过前端优化手段,通过html样式话,利用浏览器段并发和异步特性,挑战浏览器缓存,使用CDN和反向代理使浏览器尽快返回用户感兴趣数据.即使不优化应用程序和架构,也可以很大程度改善用户视觉性能 开发人员视觉的性能 关注应用程序本身及子系统的性能,包括相应延迟,系统吞吐量,并

构建MySQL+DRBD+Keepalived高性能架构

前言* DRBD(DistributedReplicatedBlockDevice)是一个基于块设备级别在远程服务器直接同步和镜像数据的开源软件,类似于RAID1数据镜像,通常配合keepalived.heartbeat等HA软件来实现高可用性.这里简单记录仅供参考. 一.实施环境 系统版本:CentOS 5.8 DRBD版本: drbd-8.3.15 Keepalived:keepalived-1.1.15 Master:192.168.149.128 Backup:192.168.149.1

途牛原创|大话权限中心的PHP架构之道

序 权限管理是无线运营系统中的核心模块,通过访问控制策略的配置,来约定人与资源的访问关系. 本文着重讲解如何通过PHP来构建一个灵活.通用.安全的权限管理系统. 关于权限 首先我们来聊聊权限. 权限系统一直以来是我们应用系统不可缺少的一个部分,若每个应用系统都重新对系统的权限进行设计,以满足不同系统用户的需求,将会浪费我们不少宝贵时间,所以花时间来设计一个相对通用的权限系统是很有意义的. 系统目标:对应用系统的所有对象资源和数据资源进行权限控制,比如 应用系统的功能菜单.各个界面的按钮.数据显示