(说明:本博客中的题目、题目详细说明及参考代码均摘自 “何海涛《剑指Offer:名企面试官精讲典型编程题》2012年”)
题目
1. 写一个函数,输入 n, 求斐波那契(Fibonacci)数列的第 n 项。斐波那契数列的定义如下:
2. 一只青蛙一次可以跳上 1 级台阶,也可以跳上 2 级。求该青蛙跳上一个n级的台阶总共有多少种跳法?
3. 一只青蛙一次可以跳上 1 级台阶,也可以跳上 2 级,...... ,也可以跳上n级,此时该青蛙跳上一个 n 级的台阶共有多少种跳法?
4. 用 2x1 (图 2.13 的左边)的小矩形横着或者竖着去覆盖更大的矩形。请问用 8 个 2x1 小矩形无重叠地覆盖一个 2x8 的大矩形(图 2.13 的右边),总共有多少种方法?
题目解析
本博客提及到 4 个题目:题目 1 直接给出斐波那契数列的定义,可采用多种算法实现,这些算法思想将在 “算法设计思想“ 部分介绍;题目 2 和题目 4 的本质上解决的还是斐波那契数列第 n 项的计算问题,即题目 1;题目 3 可以说是数学问题,只要意识到其计算的实质上是 2 的 n 次幂即可,剩下的工作采用程序就很容易实现了。
下面具体说如何理解题目 2、题目 3 和 题目4:
- 对于题目 2,青蛙每次只能跳上 1 级或 2 级台阶。假定青蛙需要跳上 n 级台阶,其可能的组合数为 g(n) 。青蛙第 1 次跳台阶有 2 种可能:跳上 1 级台阶,剩余 n-1 级台阶;跳上 2 级台阶,剩余 n-2 级台阶。所以 g(n) = g(n-1) + g(n-2),即青蛙跳上 n 级台阶的可能的组合数等于第 1 次跳上 1 级台阶的可能组合数加上第 1 次跳上 2 级台阶的可能组合数。也可理解为以何种方式跳上第 n 级台阶(跳上 1 级台阶,还是跳上 2 级台阶)。至此,就转化为求解斐波那契数列的第 n 项问题。
- 对于题目 3,与题目 2 相比,区别在于青蛙每次可以跳上任意级台阶,不仅仅是 1 级或 2 级台阶。如果此时青蛙需要跳上 n 级台阶,可采取的跳法有 f(n) = 2n-1 种。可以采用数学归纳法证明,具体证明思路如下:
当 n = 1或 n = 2 时, 显然成立;
令 n = k 时, f(k) = 2k-1 成立,当 n = k+1 时,f(k+1) = f(k) + f(k-1) + f(k-2) + ... + f(1) + 1. 在增加 1 级台阶后,可以理解为,设青蛙在跳上最后一级台阶(新增加的台阶)时,所跳上的台阶数为 x,若 x = 1,则此时可采跳法是 f(k) 种跳法;若 x = 2,则此时可采取的跳法为 f(k-1); 如此下去,一直到 x = k-1 时,则此时可采取的跳法为 f(1);除此之外,还需要加上一种 x = k+1 可能,即只需一次直接跳上 k+1 级台阶。又因为
- 对于题目 4,使用图 2.13 左图 (2x1的矩形,也可变换为1x2矩形,设为形状A) 填充图 2.13 的右图 (2x8的矩形,设为形状B(8),其中8为列数) 时,如果先放置一块,有两种放法,一种横着放,一种是竖着放。如果第一次横着放,则下一个也必须是横着放,此时问题变为使用形状 A 填充形状 B(6);如果第一次是竖着放,则问题变为使用形状 A 填充形状 B(7)。为了表示方便,则依旧用相同的符号 B 表示为用 A 填充 B 的方法数,则有 B(8) = B(6) + B(7),从递推公式可以看出,这是一个斐波那契数列的问题。
算法设计思想
1. 递归方法(Recursive Method)。循环调用自身。缺点:有大量的重复计算,不实用。优点:实现非常简单,代码短小。对于斐波那契数列的实现,其时间复杂度为 O(2n)。
2. 迭代方法 (Iterative Method)。通过循环,替代递归方法,从理论上说,任何递归算法都可用迭代算法实现。优点:节省栈空间,有可能降低时间复杂度。缺点是相对于递归方法,实现较难,代码往往会复杂一些。对斐波那契数列,其时间复杂度为 O(n),是比较实用的算法。
3. 公式法。通过不常用的计算斐波那契数列的第 n 项的数学公式,如果采用合适的实现方式,可将时间复杂度降为 O(logn),具体数学公式和相关说明如下(摘自参考资料):
C++ 实现
#include <iostream> // Method 1: recursive method and its time complexity is O(2^n). int fibonacciRecursively(int n) { int result; if (n <= 0) result = 0; else if (1 == n) result = 1; else result = fibonacciRecursively(n-1) + fibonacciRecursively(n-2); return result; } // Method 2: iterative method and its time complexity is O(n). int fibonacciIteratively(int n) { int result = 0; int nextItem = 1; for (int i = 1; i <= n; ++i) { int tmp = nextItem; nextItem += result; result = tmp; } return result; } // Method 3: by means of the specified matrix power long int* matrixPower(long int *mat, int n); // compute the power of the matrix int fibonacciMatrixPower(int n) { long int matrix[] = {1, 1, 1, 0}; int result = 0; if (n <= 0) result = 0; else { matrixPower(matrix, n-1); result = matrix[0]; } return result; } // 2 x 2 matrix power, n >= 0 long int* matrixPower(long int *mat, int n) { const int rows = 2; const int cols = 2; if (n <= 0) return NULL; else if (0 == n) { // identity matrix when the power of a matrix is 0. for (int i = 0; i < rows; ++i) for (int j = 0; i < cols; ++j) { if (i == j) *(mat + i * cols + j) = 1; else *(mat + i * cols + j) = 0; } } else if (1 == n) { } else if (2 == n) { // Create two temporary arrays for matrix multiplication long int tmpMat1[4], tmpMat2[4]; for (int i = 0; i < rows; ++i) for (int j = 0; j < cols; ++j) { tmpMat1[i*cols+j] = *(mat + i * cols + j); tmpMat2[i*cols+j] = *(mat + i * cols + j); } // matrix multiplication *(mat + 0 * cols + 0) = tmpMat1[0*cols+0] * tmpMat2[0*cols+0] + tmpMat1[0*cols+1] * tmpMat2[1*cols+0]; // matrix{0,0} *(mat + 0 * cols + 1) = tmpMat1[0*cols+0] * tmpMat2[0*cols+1] + tmpMat1[0*cols+1] * tmpMat2[1*cols+1]; // matrix{0,1} *(mat + 1 * cols + 0) = tmpMat1[1*cols+0] * tmpMat2[0*cols+0] + tmpMat1[1*cols+1] * tmpMat2[1*cols+0]; // matrix{1,0} *(mat + 1 * cols + 1) = tmpMat1[1*cols+0] * tmpMat2[0*cols+1] + tmpMat1[1*cols+1] * tmpMat2[1*cols+1]; // matrix{1,1} } else if (n % 2 == 0) // when n is even and n is greater than 2 { matrixPower(mat, n/2); matrixPower(mat, 2); } else // n is odd and n is greater than 2 { long int tmpMat1[4]; for (int k = 0; k < 4; ++k) tmpMat1[k] = *(mat + k); // Compute matrix power in even case matrixPower(mat, n-1); // Temporarily save the matrix long int tmpMat2[4]; for (int k = 0; k < 4; ++k) tmpMat2[k] = *(mat + k); // matrix multiplication with additional element. *(mat + 0 * cols + 0) = tmpMat1[0*cols+0] * tmpMat2[0*cols+0] + tmpMat1[0*cols+1] * tmpMat2[1*cols+0]; *(mat + 0 * cols + 1) = tmpMat1[0*cols+0] * tmpMat2[0*cols+1] + tmpMat1[0*cols+1] * tmpMat2[1*cols+1]; *(mat + 1 * cols + 0) = tmpMat1[1*cols+0] * tmpMat2[0*cols+0] + tmpMat1[1*cols+1] * tmpMat2[1*cols+0]; *(mat + 1 * cols + 1) = tmpMat1[1*cols+0] * tmpMat2[0*cols+1] + tmpMat1[1*cols+1] * tmpMat2[1*cols+1]; } return mat; } void unitest() { int n = 5; std::cout << "The " << n << "-th item in the fibonacci sequence: \n" << " Recursive method result: " << fibonacciRecursively(n) << std::endl << " Iterative method result: " << fibonacciIteratively(n) << std::endl << " Matrix power method result: " << fibonacciMatrixPower(n) << std::endl ; } int main() { unitest(); return 0; }
Python 实现
#!/usr/bin/python # -*- coding: utf8 -*- # Method 1: recursive method def fib_recursively(n): result = 0 if n >= 1: if 1 == n: result = 1 else: result = fib_recursively(n-1) + fib_recursively(n-2) return result # Method 2: iterative method def fib_iteratively(n): result, next_item = 0, 1 i = 1 while i <= n: result, next_item = next_item, result + next_item i += 1 return result # Method 3: matrix power def fib_matrix_power(n): matrix = [1, 1, 1, 0] result = 0 if n > 0: matrix_power(matrix, n-1) result = matrix[0] return result # 2 x 2 matrix power def matrix_power(mat, n): rows, cols = 2, 2 # 2 x 2 matrix if n <= 0: return None elif 0 == n: mat[:] = [1, 0, 0, 1] # identity matrix elif 1 == n: pass elif 2 == n: tmp_mat1, tmp_mat2 = [], [] tmp_mat1.extend(mat) tmp_mat2.extend(mat) # matrix multiplication for i in range(rows): for j in range(cols): mat[i*cols+j] = inner_product(tmp_mat1[i::cols], tmp_mat2[j::cols]) elif n % 2 == 0: # even case matrix_power(mat, n/2) matrix_power(mat, 2) else: # temporarily save mat tmp_mat1 = [] tmp_mat1.extend(mat) # recursive call matrix_power(mat, n-1) # multiply with former temporary value tmp_mat2 = [] tmp_mat2.extend(mat) for i in range(rows): for j in range(cols): mat[i*cols+j] = inner_product(tmp_mat1[i::cols], tmp_mat2[j::cols]) return mat def inner_product(vec1, vec2): product = 0 if (vec1 and vec2 and len(vec1) == len(vec2)): for i in range(len(vec1)): product += vec1[i] * vec2[i] return product if __name__ == ‘__main__‘: n = 5 print("The %d-th item in the fibonacci sequence:" % n) print(" Recursive method result: %d" % fib_recursively(n)) print(" Iterative method result: %d" % fib_iteratively(n)) print(" Matrix power method result: %d" % fib_matrix_power(n))
参考代码
1. targetver.h
#pragma once // The following macros define the minimum required platform. The minimum required platform // is the earliest version of Windows, Internet Explorer etc. that has the necessary features to run // your application. The macros work by enabling all features available on platform versions up to and // including the version specified. // Modify the following defines if you have to target a platform prior to the ones specified below. // Refer to MSDN for the latest info on corresponding values for different platforms. #ifndef _WIN32_WINNT // Specifies that the minimum required platform is Windows Vista. #define _WIN32_WINNT 0x0600 // Change this to the appropriate value to target other versions of Windows. #endif
2. stdafx.h
// stdafx.h : include file for standard system include files, // or project specific include files that are used frequently, but // are changed infrequently // #pragma once #include "targetver.h" #include <stdio.h> #include <tchar.h> // TODO: reference additional headers your program requires here
3. stdafx.cpp
// stdafx.cpp : source file that includes just the standard includes // Fibonacci.pch will be the pre-compiled header // stdafx.obj will contain the pre-compiled type information #include "stdafx.h" // TODO: reference any additional headers you need in STDAFX.H // and not in this file
4. Fibonacci.cpp
// Fibonacci.cpp : Defines the entry point for the console application. // // 《剑指Offer——名企面试官精讲典型编程题》代码 // 著作权所有者:何海涛 #include "stdafx.h" // ====================方法1:递归==================== long long Fibonacci_Solution1(unsigned int n) { if(n <= 0) return 0; if(n == 1) return 1; return Fibonacci_Solution1(n - 1) + Fibonacci_Solution1(n - 2); } // ====================方法2:循环==================== long long Fibonacci_Solution2(unsigned n) { int result[2] = {0, 1}; if(n < 2) return result[n]; long long fibNMinusOne = 1; long long fibNMinusTwo = 0; long long fibN = 0; for(unsigned int i = 2; i <= n; ++ i) { fibN = fibNMinusOne + fibNMinusTwo; fibNMinusTwo = fibNMinusOne; fibNMinusOne = fibN; } return fibN; } // ====================方法3:基于矩阵乘法==================== #include <cassert> struct Matrix2By2 { Matrix2By2 ( long long m00 = 0, long long m01 = 0, long long m10 = 0, long long m11 = 0 ) :m_00(m00), m_01(m01), m_10(m10), m_11(m11) { } long long m_00; long long m_01; long long m_10; long long m_11; }; Matrix2By2 MatrixMultiply ( const Matrix2By2& matrix1, const Matrix2By2& matrix2 ) { return Matrix2By2( matrix1.m_00 * matrix2.m_00 + matrix1.m_01 * matrix2.m_10, matrix1.m_00 * matrix2.m_01 + matrix1.m_01 * matrix2.m_11, matrix1.m_10 * matrix2.m_00 + matrix1.m_11 * matrix2.m_10, matrix1.m_10 * matrix2.m_01 + matrix1.m_11 * matrix2.m_11); } Matrix2By2 MatrixPower(unsigned int n) { assert(n > 0); Matrix2By2 matrix; if(n == 1) { matrix = Matrix2By2(1, 1, 1, 0); } else if(n % 2 == 0) { matrix = MatrixPower(n / 2); matrix = MatrixMultiply(matrix, matrix); } else if(n % 2 == 1) { matrix = MatrixPower((n - 1) / 2); matrix = MatrixMultiply(matrix, matrix); matrix = MatrixMultiply(matrix, Matrix2By2(1, 1, 1, 0)); } return matrix; } long long Fibonacci_Solution3(unsigned int n) { int result[2] = {0, 1}; if(n < 2) return result[n]; Matrix2By2 PowerNMinus2 = MatrixPower(n - 1); return PowerNMinus2.m_00; } // ====================测试代码==================== void Test(int n, int expected) { if(Fibonacci_Solution1(n) == expected) printf("Test for %d in solution1 passed.\n", n); else printf("Test for %d in solution1 failed.\n", n); if(Fibonacci_Solution2(n) == expected) printf("Test for %d in solution2 passed.\n", n); else printf("Test for %d in solution2 failed.\n", n); if(Fibonacci_Solution3(n) == expected) printf("Test for %d in solution3 passed.\n", n); else printf("Test for %d in solution3 failed.\n", n); } int _tmain(int argc, _TCHAR* argv[]) { Test(0, 0); Test(1, 1); Test(2, 1); Test(3, 2); Test(4, 3); Test(5, 5); Test(6, 8); Test(7, 13); Test(8, 21); Test(9, 34); Test(10, 55); Test(40, 102334155); return 0; }
5. 参考代码下载
项目 09_Fibonacci 下载: 百度网盘
何海涛《剑指Offer:名企面试官精讲典型编程题》 所有参考代码下载:百度网盘
参考资料
[1] 何海涛. 剑指 Offer:名企面试官精讲典型编程题 [M]. 北京:电子工业出版社,2012. 71-77.