[uboot] uboot启动kernel篇(二)——bootm跳转到kernel的流程

一、bootm说明

bootm这个命令用于启动一个操作系统映像。它会从映像文件的头部取得一些信息,这些信息包括:映像文件的基于的cpu架构、其操作系统类型、映像的类型、压缩方式、映像文件在内存中的加载地址、映像文件运行的入口地址、映像文件名等。

紧接着bootm将映像加载到指定的地址,如果需要的话,还会解压映像并传递必要有参数给内核,最后跳到入口地址进入内核。

这里的描述参考(http://blog.chinaunix.net/uid-20799298-id-99666.html

需要打开的宏

CONFIG_BOOTM_LINUX=y
CONFIG_CMD_BOOTM=y

二、bootm使用方式

在《uboot启动kernel篇(一)——Legacy-uImage & FIT-uImage》中我们知道了uImage有两种格式。

  • Legacy-uImage

    对于Legacy-uImage,我们需要另外加载ramdisk和fdt到RAM上面。

    执行的命令如下

假设Legacy-uImage的加载地址是0x20008000,ramdisk的加载地址是0x21000000,fdt的加载地址是0x22000000

(1) 只加载kernel的情况下
bootm 0x20008000

(2) 加载kernel和ramdisk
bootm 0x20008000 0x21000000

(3) 加载kernel和fdt
bootm 0x20008000 - 0x22000000

(4) 加载kernel、ramdisk、fdt
bootm 0x20008000 0x21000000 0x22000000
  • FIT-uImage

    对于FIT-uImage,kernel镜像、ramdisk镜像和fdt都已经打包到FIT-uImage的镜像中了。

    执行的命令如下

假设FIT-uImage的加载地址是0x30000000,启动kernel的命令如下:
bootm 0x30000000

三、bootm执行流程

建议先参考《[uboot] (第六章)uboot流程——命令行模式以及命令处理介绍》。

  • 对应U_BOOT_CMD

    我们找到bootm命令对应的U_BOOT_CMD如下:

    cmd/bootm.c

U_BOOT_CMD(
    bootm,  CONFIG_SYS_MAXARGS, 1,  do_bootm,
    "boot application image from memory", bootm_help_text
);
当执行‘bootm 0x20008000 0x21000000 0x22000000’
int do_bootm(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
cmdtp:传递的是bootm的命令表项指针,也就是_u_boot_list_2_cmd_2_bootm的指针
argc=4
argv[0]="bootm", argv[1]=0x20008000, arv[2]=0x21000000, argv[3]=0x22000000
  • do_bootm实现

    do_bootm实现如下:


/*******************************************************************/
/* bootm - boot application image from image in memory */
/*******************************************************************/

int do_bootm(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
    /* determine if we have a sub command */
    argc--; argv++;
    if (argc > 0) {
        char *endp;

        simple_strtoul(argv[0], &endp, 16);
        /* endp pointing to NULL means that argv[0] was just a
         * valid number, pass it along to the normal bootm processing
         *
         * If endp is ‘:‘ or ‘#‘ assume a FIT identifier so pass
         * along for normal processing.
         *
         * Right now we assume the first arg should never be ‘-‘
         */
        if ((*endp != 0) && (*endp != ‘:‘) && (*endp != ‘#‘))
            return do_bootm_subcommand(cmdtp, flag, argc, argv);
    }
        // 以上会判断是否有子命令,这里我们不管
        // 到这里,参数中的bootm参数会被去掉,
        // 也就是当‘bootm 0x20008000 0x21000000 0x22000000‘时
        // argc=3, argv[0]=0x20008000 , argv[1]=0x21000000, argv[2]=0x22000000
        // 当‘bootm 0x30000000’时
        // argc=1, argv[0]=0x30000000

    return do_bootm_states(cmdtp, flag, argc, argv, BOOTM_STATE_START |
        BOOTM_STATE_FINDOS | BOOTM_STATE_FINDOTHER |
        BOOTM_STATE_LOADOS |
        BOOTM_STATE_OS_PREP | BOOTM_STATE_OS_FAKE_GO |
        BOOTM_STATE_OS_GO, &images, 1);
        // 最终对调用到do_bootm_states,在do_bootm_states中执行的操作如states标识所示:
        // BOOTM_STATE_START
        // BOOTM_STATE_FINDOS
        // BOOTM_STATE_FINDOTHER
        // BOOTM_STATE_LOADOS
        // BOOTM_STATE_OS_PREP
        // BOOTM_STATE_OS_FAKE_GO
        // BOOTM_STATE_OS_GO
}

所以bootm的核心是do_bootm_states,以全局变量bootm_headers_t images作为do_bootm_states的参数。

下面详细说明这个函数。

四、do_bootm_states软件流程

1、数据结构说明

  • bootm_headers_t

    bootm_headers_t用来表示bootm启动kernel的一些信息的结构体,其中包括了os/initrd/fdt images的信息。

    bootm会根据参数以及参数指向的镜像来填充这个结构题里面的成员。

    最终再使用这个结构体里面的信息来填充kernel启动信息并且到跳转到kernel中。

    在uboot中使用了一个全局的bootm_headers_t images。

typedef struct bootm_headers {
    /*
     * Legacy os image header, if it is a multi component image
     * then boot_get_ramdisk() and get_fdt() will attempt to get
     * data from second and third component accordingly.
     */
    image_header_t  *legacy_hdr_os;     /* image header pointer */  // Legacy-uImage的镜像头
    image_header_t  legacy_hdr_os_copy; /* header copy */ // Legacy-uImage的镜像头备份
    ulong       legacy_hdr_valid; // Legacy-uImage的镜像头是否存在的标记

#if IMAGE_ENABLE_FIT
    const char  *fit_uname_cfg; /* configuration node unit name */ // 配置节点名

    void        *fit_hdr_os;    /* os FIT image header */ // FIT-uImage中kernel镜像头
    const char  *fit_uname_os;  /* os subimage node unit name */ // FIT-uImage中kernel的节点名
    int     fit_noffset_os; /* os subimage node offset */ // FIT-uImage中kernel的节点偏移

    void        *fit_hdr_rd;    /* init ramdisk FIT image header */ // FIT-uImage中ramdisk的镜像头
    const char  *fit_uname_rd;  /* init ramdisk subimage node unit name */ // FIT-uImage中ramdisk的节点名
    int     fit_noffset_rd; /* init ramdisk subimage node offset */ // FIT-uImage中ramdisk的节点偏移

    void        *fit_hdr_fdt;   /* FDT blob FIT image header */ // FIT-uImage中FDT的镜像头
    const char  *fit_uname_fdt; /* FDT blob subimage node unit name */ // FIT-uImage中FDT的节点名
    int     fit_noffset_fdt;/* FDT blob subimage node offset */ // FIT-uImage中FDT的节点偏移
#endif

    image_info_t    os;     /* os image info */ // 操作系统信息的结构体
    ulong       ep;     /* entry point of OS */ // 操作系统的入口地址

    ulong       rd_start, rd_end;/* ramdisk start/end */ // ramdisk在内存上的起始地址和结束地址

    char        *ft_addr;   /* flat dev tree address */ // fdt在内存上的地址
    ulong       ft_len;     /* length of flat device tree */ // fdt在内存上的长度

    ulong       initrd_start; //
    ulong       initrd_end; //
    ulong       cmdline_start; //
    ulong       cmdline_end; //
    bd_t        *kbd; // 

    int     verify;     /* getenv("verify")[0] != ‘n‘ */ // 是否需要验证
    int     state; // 状态标识,用于标识对应的bootm需要做什么操作,具体看下面2.

#ifdef CONFIG_LMB
    struct lmb  lmb;        /* for memory mgmt */
#endif

} bootm_headers_t;

2、状态说明

  • BOOTM_STATE_START

    #define BOOTM_STATE_START (0x00000001)

    开始执行bootm的一些准备动作。

  • BOOTM_STATE_FINDOS

    #define BOOTM_STATE_FINDOS (0x00000002)

    查找操作系统镜像

  • BOOTM_STATE_FINDOTHER

    #define BOOTM_STATE_FINDOTHER (0x00000004)

    查找操作系统镜像外的其他镜像,比如FDT\ramdisk等等

  • BOOTM_STATE_LOADOS

    #define BOOTM_STATE_LOADOS (0x00000008)

    加载操作系统

  • BOOTM_STATE_RAMDISK

    #define BOOTM_STATE_RAMDISK (0x00000010)

    操作ramdisk

  • BOOTM_STATE_FDT

    #define BOOTM_STATE_FDT (0x00000020)

    操作FDT

  • BOOTM_STATE_OS_CMDLINE

    #define BOOTM_STATE_OS_CMDLINE (0x00000040)

    操作commandline

  • BOOTM_STATE_OS_BD_T

    #define BOOTM_STATE_OS_BD_T (0x00000080)

  • BOOTM_STATE_OS_PREP

    #define BOOTM_STATE_OS_PREP (0x00000100)

    跳转到操作系统的前的准备动作

  • BOOTM_STATE_OS_FAKE_GO

    #define BOOTM_STATE_OS_FAKE_GO (0x00000200) /* ‘Almost’ run the OS */

    伪跳转,一般都能直接跳转到kernel中去

  • BOOTM_STATE_OS_GO

    #define BOOTM_STATE_OS_GO (0x00000400)

    跳转到kernel中去

3、软件流程说明

do_bootm_states根据states来判断要执行的操作。

  • 主要流程简单说明如下:

    • bootm的准备动作

      BOOTM_STATE_START

    • 获取kernel信息

      BOOTM_STATE_FINDOS

    • 获取ramdisk和fdt的信息

      BOOTM_STATE_FINDOTHER

    • 加载kernel到对应的位置上(有可能已经就在这个位置上了)

      BOOTM_STATE_LOADOS

    • 重定向ramdisk和fdt(不一定需要)

      BOOTM_STATE_RAMDISK、BOOTM_STATE_FDT

    • 执行跳转前的准备动作

      BOOTM_STATE_OS_PREP

    • 设置启动参数,跳转到kernel所在的地址上

      BOOTM_STATE_OS_GO

在这些流程中,起传递作用的是bootm_headers_t images这个数据结构,有些流程是解析镜像,往这个结构体里写数据。

而跳转的时候,则需要使用到这个结构体里面的数据。

  • 软件代码如下

    common/bootm.c

int do_bootm_states(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[],
            int states, bootm_headers_t *images, int boot_progress)
{
    boot_os_fn *boot_fn;
    ulong iflag = 0;
    int ret = 0, need_boot_fn;

    images->state |= states;
       // 把states放到bootm_headers_t images内部

    /*
     * Work through the states and see how far we get. We stop on
     * any error.
     */
        // 判断states是否需要BOOTM_STATE_START动作,也就是bootm的准备动作,需要的话则调用bootm_start
    if (states & BOOTM_STATE_START)
        ret = bootm_start(cmdtp, flag, argc, argv);

        // 判断states是否需要BOOTM_STATE_FINDOS动作,也就是获取kernel信息,需要的话在调用bootm_find_os
    if (!ret && (states & BOOTM_STATE_FINDOS))
        ret = bootm_find_os(cmdtp, flag, argc, argv);

    ·   // 判断states是否需要BOOTM_STATE_FINDOTHER动作,也就是获取ramdisk和fdt等其他镜像的信息,需要的话则调用bootm_find_other
    if (!ret && (states & BOOTM_STATE_FINDOTHER)) {
        ret = bootm_find_other(cmdtp, flag, argc, argv);
        argc = 0;   /* consume the args */
    }

        /* 这里要重点注意,前面的步骤都是在解析uImage镜像并填充bootm_headers_t images */
        /* 也就是说解析uImage的部分在此之前 */
        /* 而后续则是使用bootm_headers_t images 里面的内容来进行后续动作*/

    /* Load the OS */
        // 判断states是否需要BOOTM_STATE_LOADOS动作,也就是加载操作系统的动作,需要的话则调用bootm_load_os
    if (!ret && (states & BOOTM_STATE_LOADOS)) {
        ulong load_end;

        iflag = bootm_disable_interrupts();
        ret = bootm_load_os(images, &load_end, 0);
        if (ret == 0)
            lmb_reserve(&images->lmb, images->os.load,
                    (load_end - images->os.load));
        else if (ret && ret != BOOTM_ERR_OVERLAP)
            goto err;
        else if (ret == BOOTM_ERR_OVERLAP)
            ret = 0;
#if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY)
        if (images->os.os == IH_OS_LINUX)
            fixup_silent_linux();
#endif
    }

        // 是否需要重定向ramdinsk,do_bootm流程的话是不需要的
    /* Relocate the ramdisk */
#ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH
    if (!ret && (states & BOOTM_STATE_RAMDISK)) {
        ulong rd_len = images->rd_end - images->rd_start;

        ret = boot_ramdisk_high(&images->lmb, images->rd_start,
            rd_len, &images->initrd_start, &images->initrd_end);
        if (!ret) {
            setenv_hex("initrd_start", images->initrd_start);
            setenv_hex("initrd_end", images->initrd_end);
        }
    }
#endif

        // 是否需要重定向fdt,do_bootm流程的话是不需要的
#if IMAGE_ENABLE_OF_LIBFDT && defined(CONFIG_LMB)
    if (!ret && (states & BOOTM_STATE_FDT)) {
        boot_fdt_add_mem_rsv_regions(&images->lmb, images->ft_addr);
        ret = boot_relocate_fdt(&images->lmb, &images->ft_addr,
                    &images->ft_len);
    }
#endif

    /* From now on, we need the OS boot function */
    if (ret)
        return ret;

        // 获取对应操作系统的启动函数,存放到boot_fn中
    boot_fn = bootm_os_get_boot_func(images->os.os);
    need_boot_fn = states & (BOOTM_STATE_OS_CMDLINE |
            BOOTM_STATE_OS_BD_T | BOOTM_STATE_OS_PREP |
            BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO);
    if (boot_fn == NULL && need_boot_fn) {
        if (iflag)
            enable_interrupts();
        printf("ERROR: booting os ‘%s‘ (%d) is not supported\n",
               genimg_get_os_name(images->os.os), images->os.os);
        bootstage_error(BOOTSTAGE_ID_CHECK_BOOT_OS);
        return 1;
    }

    /* Call various other states that are not generally used */
    if (!ret && (states & BOOTM_STATE_OS_CMDLINE))
        ret = boot_fn(BOOTM_STATE_OS_CMDLINE, argc, argv, images);
    if (!ret && (states & BOOTM_STATE_OS_BD_T))
        ret = boot_fn(BOOTM_STATE_OS_BD_T, argc, argv, images);

        // 跳转到操作系统前的准备动作,会直接调用启动函数,但是标识是BOOTM_STATE_OS_PREP
    if (!ret && (states & BOOTM_STATE_OS_PREP))
        ret = boot_fn(BOOTM_STATE_OS_PREP, argc, argv, images);

    /* Check for unsupported subcommand. */
    if (ret) {
        puts("subcommand not supported\n");
        return ret;
    }

        // BOOTM_STATE_OS_GO标识,跳转到操作系统中,并且不应该再返回了
    /* Now run the OS! We hope this doesn‘t return */
    if (!ret && (states & BOOTM_STATE_OS_GO))
        ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_GO,
                images, boot_fn);

    /* Deal with any fallout */
err:
    if (iflag)
        enable_interrupts();

    if (ret == BOOTM_ERR_UNIMPLEMENTED)
        bootstage_error(BOOTSTAGE_ID_DECOMP_UNIMPL);
    else if (ret == BOOTM_ERR_RESET)
        do_reset(cmdtp, flag, argc, argv);

    return ret;
}

主要用到如下依次几个函数来实现:

  • bootm_start
  • bootm_find_os
  • bootm_find_other
  • bootm_load_os
  • bootm_os_get_boot_func
  • boot_fn(BOOTM_STATE_OS_PREP, argc, argv, images);
  • boot_selected_os
  • boot_selected_os(argc, argv, BOOTM_STATE_OS_GO,images, boot_fn);

4、bootm_start & bootm_find_os & bootm_find_other

主要负责解析环境变量、参数、uImage,来填充bootm_headers_t images这个数据结构。

最终目的是实现bootm_headers_t images中的这几个成员

typedef struct bootm_headers {
    image_info_t    os;     /* os image info */
    ulong       ep;     /* entry point of OS */

    ulong       rd_start, rd_end;/* ramdisk start/end */

    char        *ft_addr;   /* flat dev tree address */
    ulong       ft_len;     /* length of flat device tree */

    ulong       initrd_start;
    ulong       initrd_end;
    ulong       cmdline_start;
    ulong       cmdline_end;
    bd_t        *kbd;
    int     verify;     /* getenv("verify")[0] != ‘n‘ */
#ifdef CONFIG_LMB
    struct lmb  lmb;        /* for memory mgmt */
#endif
}
  • bootm_start

    实现verify和lmb

  • bootm_find_os

    实现os和ep。

    也就是说,不管是Legacy-uImage还是FIT-uImage,最终解析出来要得到的都是这两个成员。

    放在《uboot启动kernel篇(三)——解析uImage的kernel镜像》中具体说明。

  • bootm_find_other

    实现rd_start, rd_end,ft_addr和initrd_end。

    也就是说,不管是Legacy-uImage还是FIT-uImage,最终解析出来要得到的都是这两个成员。

    放在《uboot启动kernel篇(四)——解析uImage的fdt》和《uboot启动kernel篇(五)——解析uImage的ramdisk》中具体说明。

5、bootm_load_os

简单说明一下,在bootm_load_os中,会对kernel镜像进行load到对应的位置上,并且如果kernel镜像是被mkimage压缩过的,那么会先经过解压之后再进行load。(这里要注意,这里的压缩和Image压缩成zImage并不是同一个,而是uboot在Image或者zImage的基础上进行的压缩!!!)

static int bootm_load_os(bootm_headers_t *images, unsigned long *load_end,
             int boot_progress)
{
    image_info_t os = images->os;
    ulong load = os.load; // kernel要加载的地址
    ulong blob_start = os.start;
    ulong blob_end = os.end;
    ulong image_start = os.image_start; // kernel实际存在的位置
    ulong image_len = os.image_len; // kernel的长度
    bool no_overlap;
    void *load_buf, *image_buf;
    int err;

    load_buf = map_sysmem(load, 0);
    image_buf = map_sysmem(os.image_start, image_len);

// 调用bootm_decomp_image,对image_buf的镜像进行解压缩,并load到load_buf上
    err = bootm_decomp_image(os.comp, load, os.image_start, os.type,
                 load_buf, image_buf, image_len,
                 CONFIG_SYS_BOOTM_LEN, load_end);

结果上述步骤之后,kernel镜像就被load到对应位置上了。

6、bootm_os_get_boot_func

bootm_os_get_boot_func用于获取到对应操作系统的启动函数,被存储到boot_fn 中。

如下:

int do_bootm_states(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[],
            int states, bootm_headers_t *images, int boot_progress)
{
...
    boot_fn = bootm_os_get_boot_func(images->os.os);
...
}

boot_os_fn *bootm_os_get_boot_func(int os)
{
    return boot_os[os];
// 根据操作系统类型获得到对应的操作函数
}

static boot_os_fn *boot_os[] = {
...
#ifdef CONFIG_BOOTM_LINUX
    [IH_OS_LINUX] = do_bootm_linux,
#endif
}

可以看出最终启动linux的核心函数是do_bootm_linux。

另外几个函数最终也是调用到boot_fn,对应linux也就是do_bootm_linux,所以这里不在说明了。

下面继续说明一下do_bootm_linux的流程

五、do_bootm_linux

arch/arm/lib/bootm.c

int do_bootm_linux(int flag, int argc, char * const argv[],
           bootm_headers_t *images)
{
    /* No need for those on ARM */
    if (flag & BOOTM_STATE_OS_BD_T || flag & BOOTM_STATE_OS_CMDLINE)
        return -1;

        // 当flag为BOOTM_STATE_OS_PREP,则说明只需要做准备动作boot_prep_linux
    if (flag & BOOTM_STATE_OS_PREP) {
        boot_prep_linux(images);
        return 0;
    }

        // 当flag为BOOTM_STATE_OS_GO ,则说明只需要做跳转动作
        if (flag & (BOOTM_STATE_OS_GO | BOOTM_STATE_OS_FAKE_GO)) {
        boot_jump_linux(images, flag);
        return 0;
    }

    boot_prep_linux(images); // 以全局变量bootm_headers_t images为参数传递给boot_prep_linux
    boot_jump_linux(images, flag);// 以全局变量bootm_headers_t images为参数传递给boot_jump_linux
    return 0;
}

boot_prep_linux用于实现跳转到linux前的准备动作。

而boot_jump_linux用于跳转到linux中。

都是以全局变量bootm_headers_t images为参数,这样就可以直接获取到前面步骤中得到的kernel镜像、ramdisk以及fdt的信息了。

  • boot_prep_linux

    首先要说明一下LMB的概念。LMB是指logical memory blocks,主要是用于表示内存的保留区域,主要有fdt的区域,ramdisk的区域等等。

    boot_prep_linux主要的目的是修正LMB,并把LMB填入到fdt中。

    实现如下:

static void boot_prep_linux(bootm_headers_t *images)
{
    char *commandline = getenv("bootargs");

    if (IMAGE_ENABLE_OF_LIBFDT && images->ft_len) {
#ifdef CONFIG_OF_LIBFDT
        debug("using: FDT\n");
        if (image_setup_linux(images)) {
            printf("FDT creation failed! hanging...");
            hang();
        }
#endif
    }

这里没有深入学习image_setup_linux,等后续有需要的话再进行深入。

  • boot_jump_linux

    以arm为例:

    arch/arm/lib/bootm.c

static void boot_jump_linux(bootm_headers_t *images, int flag)
{
    unsigned long machid = gd->bd->bi_arch_number; // 从bd中获取machine-id,machine-id在uboot启动流程的文章中有说明过了
    char *s;
    void (*kernel_entry)(int zero, int arch, uint params); // kernel入口函数,也就是kernel的入口地址,对应kernel的_start地址。
    unsigned long r2;
    int fake = (flag & BOOTM_STATE_OS_FAKE_GO); // 伪跳转,并不真正地跳转到kernel中

    kernel_entry = (void (*)(int, int, uint))images->ep;
         // 将kernel_entry设置为images中的ep(kernel的入口地址),后面直接执行kernel_entry也就跳转到了kernel中了
        // 这里要注意这种跳转的方法

    debug("## Transferring control to Linux (at address %08lx)"         "...\n", (ulong) kernel_entry);
    bootstage_mark(BOOTSTAGE_ID_RUN_OS);
    announce_and_cleanup(fake);

        // 把images->ft_addr(fdt的地址)放在r2寄存器中
    if (IMAGE_ENABLE_OF_LIBFDT && images->ft_len)
        r2 = (unsigned long)images->ft_addr;
    else
        r2 = gd->bd->bi_boot_params;

    if (!fake) {
            kernel_entry(0, machid, r2);
        // 这里通过调用kernel_entry,就跳转到了images->ep中了,也就是跳转到kernel中了,具体则是kernel的_start符号的地址。
        // 参数0则传入到r0寄存器中,参数machid传入到r1寄存器中,把images->ft_addr(fdt的地址)放在r2寄存器中
        // 满足了kernel启动的硬件要求
    }
}

到这里,经过kernel_entry之后就跳转到kernel环境中了。有兴趣可以看一下kernel的启动流程。

================================================================================

kernel启动流程文章

[kernel 启动流程] 前篇——vmlinux.lds分析

[kernel 启动流程] (第一章)概述

[kernel 启动流程] (第二章)第一阶段之——设置SVC、关闭中断

[kernel 启动流程] (第三章)第一阶段之——proc info的获取

[kernel 启动流程] (第四章)第一阶段之——dtb的验证

[kernel 启动流程] (第五章)第一阶段之——临时内核页表的创建

[kernel 启动流程] (第六章)第一阶段之——打开MMU

[kernel 启动流程] (第七章)第一阶段之——跳转到start_kernel

时间: 2024-10-01 04:43:43

[uboot] uboot启动kernel篇(二)——bootm跳转到kernel的流程的相关文章

[uboot] (番外篇)uboot 驱动模型(转)重要

[uboot] uboot流程系列:[project X] tiny210(s5pv210)上电启动流程(BL0-BL2)[project X] tiny210(s5pv210)从存储设备加载代码到DDR[uboot] (第一章)uboot流程——概述[uboot] (第二章)uboot流程——uboot-spl编译流程[uboot] (第三章)uboot流程——uboot-spl代码流程[uboot] (第四章)uboot流程——uboot编译流程[uboot] (第五章)uboot流程——u

[uboot] (番外篇)uboot relocation介绍

http://blog.csdn.net/ooonebook/article/details/53047992 以下例子都以project X项目tiny210(s5pv210平台,armv7架构)为例 [uboot] uboot流程系列: [project X] tiny210(s5pv210)上电启动流程(BL0-BL2) [uboot] (第一章)uboot流程——概述 [uboot] (第二章)uboot流程——uboot-spl编译流程 ========================

uboot学习之五-----uboot如何启动Linux内核

uboot和内核到底是什么?uboot实质就是一个复杂的裸机程序:uboot可以被配置也可以做移植: 操作系统内核本身就是一个裸机程序,和我们学的uboot和其他裸机程序没有本质的区别:区别就是我们操作系统运行起来后可以分为应用层和内核层,分层后,两层的权限不同,内存访问和设备操作的管理上更加精细(内核可以随便方位各种硬件,而应用程序只能被限制的访问硬件和内存地址) 直观来看:uboot的镜像是u-boot.bin,Linux系统的镜像是zImage,这两个东西其实都是两个裸机程序镜像.从系统启

S5P210-uboot源码分析-uboot如何启动内核

uboot如何启动内核 7.1.uboot和内核到底是什么? 1.uboot是一个裸机程序 (1)uboot的本质就是一个复杂点的裸机程序,和我们arm裸机中写的程序没有什么本质上的区别. (2)uboot最像我们在arm裸机中的最后写的那个shell,它其实就是一个迷你型的uboot. 2.linux内核本身也是一个"裸机程序" (1)操作系统内核本身就是一个裸机程序,和uboot并没有本质区别. (2)区别在于,操作系统运行起来后在软件层次上可以分为内核层和应用层,分层后两层的权限

u-boot移植(二)---修改前工作:代码流程分析1

一.代码执行总体流程图 1.1 代码路径 U-boot.lds (arch\arm\cpu) vectors.S (arch\arm\lib) start.S (arch\arm\cpu\arm920t) lowlevel_init.S (board\samsung\jz2440) crt0.S (arch\arm\lib) relocate.S (arch\arm\lib) Board_init.c (common\init) Board_f.c (common) Jz2440.h (incl

u-boot的启动、编译过程和命令添加

MCU:s5pv210 开发板:unsp210 u-boot:1.3.4 一.简介 U-Boot是一种支持多架构,多操作系统的Bootloader(启动引导程序) u-boot目前最新版本是:http://ftp.denx.de/pub/u-boot/ 二.启动过程 嵌入式Bootloader的启动过程可以分为单阶段(Single-Stage)和多阶段(Multi-Stage) 通常多阶段的Bootloader能够提供更复杂的功能,及更好的可读性和移植性. 从外部存储设备上启动的Bootload

u-boot(三)启动文件

目录 u-boot(三)启动文件 汇编 C:_start_armboot 代码摘要 C:main_loop 内核启动 菜单处理(自定义实现) 命令处理 title: u-boot(三)启动文件 tags: linux date: 2018-09-24 20:56:05 --- u-boot(三)启动文件 汇编 cpu/arm920t/start.S u-boot也是一个牛逼的单片机程序,所以也就需要: 硬件相关初始化 看门狗 时钟 sdram nand copy程序 设置sp 接下去就是读取内核

u-boot 第一启动阶段简要分析

1. u-boot 整体启动流程  bootloader是板子上电到linux系统加载之间的一段执行代码.分为两个启动阶段BL1,BL2.BL1主要用汇编语言编写,做一些初始化工作,并将自身从存储介质如flash拷贝到内存中,然后跳到BL2的c程序入口.BL2加载各个设备的驱动,并提供一个命令行的界面来提供各种操作,最终目的是为了加载linux内核.bootloader将启动参数传递给linux内核让其自举,它的使命也就完成了.下面是s3c6410的启动流程,非常经典. 板子自上电开始启动流程供

U-Boot分析与移植之U-Boot的启动流程

U-Boot的启动流程: