将不同的分类器组合起来,这种组合结果被称为集成方法或元算法(meta-algorithm). 使用集成方法时会有多种形式:(1)可以是不同算法的集成(2)可以是同一种算法在不同设置下的集成(3)数据集不同部分分配给不同分类器之后的集成,等等 接下来介绍基于同一种分类器多个不同实例的两种不同计算方法bagging和boosting 1. bagging 原理:从原始数据集选择S次后得到S个新数据集的一种技术.新数据集和原数据集的大小相等.每个数据集都是通过在原始数据集中随机选择一个样本来进行替换而
做重要决定时,大家可能都会考虑吸取多个专家而不只是一个人的意见.机器学习处理问题时又何尝不是如此?这就是元算法(meta-algorithm ) 背后的思路.元算法是对其他算法进行组合的一种方式 7.1 基于数据集多重抽样的分类器 ??我们自然可以将不同的分类器组合起来,而这种组合结果则被称为集成方法(ensemblemethod)或者元算法(meta-algorithm).使用集成方法时会有多种形式:可以是不同算法的集成,也可以是同一算法在不同设置下的集成,还可以是数据集不同部分分配给不同分类
当做重要决定时,大家可能都会吸取多个专家而不只是一个人的意见.机器学习处理问题时又何尝不是如此?这就是元算法背后的思路.元算法是对其他算法进行组合的一种方式. 自举汇聚法(bootstrap aggregating),也称为bagging方法,是从原始数据集选择S次后得到S个新数据集的一种技术.新数据集和原数据集的大小相等.每个数据集都是通过在原始数据集中随机选择一个样本来进行替换而得到的.在S个数据集建好之后,将某个学习算法分别作用于每个数据集就得到了S个分类器.当我们要对新数据进行分类时,就
一. 关于boosting算法的起源 boost 算法系列的起源来自于PAC Learnability(直译过来称为:PAC 可学习性).这套理论主要研究的是什么时候一个问题是可被学习的. 我们知道,可计算性在计算理论中已经有定义,而可学习性正是PAC Learnability理论所要定义的内容.另外,在计算理论中还有很大一部分精力花在研究问题是可计算的时候,其复杂度又是什么样的.因此,在计算学习理论中,也有研究可学习的问题的复杂度的内容,主要是样本复杂度 (Sample Complexity)
元算法背后的思路是对其他算法进行组合的一种方式,A from numpy import * def loadSimpData(): datMat = matrix([[ 1. , 2.1], [ 2. , 1.1], [ 1.3, 1. ], [ 1. , 1. ], [ 2. , 1. ]]) classLabels = [1.0, 1.0, -1.0, -1.0, 1.0] return datMat,classLabels def loadDataSet(fileName): #gener
前言 有人认为 AdaBoost 是最好的监督学习的方式. 某种程度上因为它是元算法,也就是说它会是几种分类器的组合.这就好比对于一个问题能够咨询多个 "专家" 的意见了. 组合的方式有多种,可能是不同分类算法的分类器,可能是同一算法在不同设置下的集成,还可以是数据集在不同部分分配给不同分类器之后的集成等等. 本文将给出的 AdaBoost 分类器实现基于第二种 (另外几种实现在此基础上稍作改动即可). 一种原始的元算法 - bagging (自举汇聚法) 这个算法的意思有点像投票系统
前言 有人认为 AdaBoost 是最好的监督学习的方式. 某种程度上因为它是元算法,也就是说它会是几种分类器的组合.这就好比对于一个问题能够咨询多个 "专家" 的意见了. 组合的方式有多种,可能是不同分类算法的分类器,可能是同一算法在不同设置下的集成,还可以是数据集在不同部分分配给不同分类器之后的集成等等. 本文将给出的 AdaBoost 分类器实现基于第二种 (另外几种实现在此基础上稍作改动即可). 一种原始的元算法 - bagging (自举汇聚法) 这个算法的意思有点像投票系统
作为(曾)被认为两大最好的监督分类算法之一的adaboost元算法(另一个为前几节介绍过的SVM算法),该算法以其简单的思想解决复杂的分类问题,可谓是一种简单而强大的算法,本节主要简单介绍adaboost元算法,并以实例看看其效果如何. 该算法简单在于adaboost算法不需要什么高深的思想,它的基础就是一个个弱小的元结构(弱分类器),比如就是给一个阈值,大于阈值的一类,小于阈值的一类,这样的最简单的结构.而它的强大在于把众多个这样的元结构(弱分类器)组合起来一起发挥功效,所谓人多力量大,就射这
课程地址:https://class.coursera.org/ntumltwo-002/lecture 重要!重要!重要~ 一.Adaptive Boosting 的动机 通过组合多个弱分类器(hypothese),构建一个更强大的分类器(hypothese),从而达到"三个臭皮匠赛过诸葛亮"的效果. 例如实际中,可以通过简单的"横""竖"组成比较复杂的模型. 二.样本权重 AdaBoost元算法中有个很重要的概念叫样本权重u. 学习算法A使用