遗传算法简介

优化算法入门系列文章目录(更新中):

  1. 模拟退火算法

  2. 遗传算法

  遗传算法 ( GA , Genetic Algorithm ) ,也称进化算法 。 遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。因此在介绍遗传算法前有必要简单的介绍生物进化知识。

一.进化论知识 

  作为遗传算法生物背景的介绍,下面内容了解即可:

  种群(Population)生物的进化以群体的形式进行,这样的一个群体称为种群。

  个体:组成种群的单个生物。

  基因 ( Gene ) 一个遗传因子。 

  染色体 ( Chromosome ) :包含一组的基因。

  生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。适应度低的个体参与繁殖的机会比较少,后代就会越来越少。

  遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。

  简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变 ( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。

二.遗传算法思想 

  借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。这样进化N代后就很有可能会进化出适应度函数值很高的个体。

  举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取) ;首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。

  编码:需要将问题的解编码成字符串的形式才能使用遗传算法。最简单的一种编码方式是二进制编码,即将问题的解编码成二进制位数组的形式。例如,问题的解是整数,那么可以将其编码成二进制位数组的形式。将0-1字符串作为0-1背包问题的解就属于二进制编码。

  遗传算法有3个最基本的操作:选择,交叉,变异。

  选择:选择一些染色体来产生下一代。一种常用的选择策略是 “比例选择”,也就是个体被选中的概率与其适应度函数值成正比。假设群体的个体总数是M,那么那么一个体Xi被选中的概率为f(Xi)/( f(X1) + f(X2) + …….. + f(Xn) ) 。比例选择实现算法就是所谓的“轮盘赌算法”( Roulette Wheel Selection ) ,轮盘赌算法的一个简单的实现如下:

轮盘赌算法

/*
* 按设定的概率,随机选中一个个体
* P[i]表示第i个个体被选中的概率
*/
int RWS()
{
m =0;
r =Random(0,1); //r为0至1的随机数
for(i=1;i<=N; i++)
{
/* 产生的随机数在m~m+P[i]间则认为选中了i
* 因此i被选中的概率是P[i]
*/
m = m + P[i];
if(r<=m) return i;
}
}

交叉(Crossover):2条染色体交换部分基因,来构造下一代的2条新的染色体。例如:

交叉前:

00000|011100000000|10000

11100|000001111110|00101

交叉后:

00000|000001111110|10000

11100|011100000000|00101

染色体交叉是以一定的概率发生的,这个概率记为Pc 。

变异(Mutation):在繁殖过程,新产生的染色体中的基因会以一定的概率出错,称为变异。变异发生的概率记为Pm 。例如:

变异前:

000001110000000010000

变异后:

000001110000100010000

 

适应度函数 ( Fitness Function ):用于评价某个染色体的适应度,用f(x)表示。有时需要区分染色体的适应度函数与问题的目标函数。例如:0-1背包问题的目标函数是所取得物品价值,但将物品价值作为染色体的适应度函数可能并不一定适合。适应度函数与目标函数是正相关的,可对目标函数作一些变形来得到适应度函数。

三.基本遗传算法的伪代码 

基本遗传算法伪代码

/*
* Pc:交叉发生的概率
* Pm:变异发生的概率
* M:种群规模
* G:终止进化的代数
* Tf:进化产生的任何一个个体的适应度函数超过Tf,则可以终止进化过程
*/
初始化Pm,Pc,M,G,Tf等参数。随机产生第一代种群Pop

do
{
  计算种群Pop中每一个体的适应度F(i)。
  初始化空种群newPop
  do
  {
    根据适应度以比例选择算法从种群Pop中选出2个个体
    if ( random ( 0 , 1 ) < Pc )
    {
      对2个个体按交叉概率Pc执行交叉操作
    }
    if ( random ( 0 , 1 ) < Pm )
    {
      对2个个体按变异概率Pm执行变异操作
    }
将2个新个体加入种群newPop中
} until ( M个子代被创建 )
用newPop取代Pop
}until ( 任何染色体得分超过Tf, 或繁殖代数超过G )

四.基本遗传算法优化 

  下面的方法可优化遗传算法的性能。

  精英主义(Elitist Strategy)选择:是基本遗传算法的一种优化。为了防止进化过程中产生的最优解被交叉和变异所破坏,可以将每一代中的最优解原封不动的复制到下一代中。

  插入操作:可在3个基本操作的基础上增加一个插入操作。插入操作将染色体中的某个随机的片段移位到另一个随机的位置。

五. 使用AForge.Genetic解决TSP问题

  AForge.NET是一个C#实现的面向人工智能、计算机视觉等领域的开源架构。AForge.NET中包含有一个遗传算法的类库。

  AForge.NET主页:http://www.aforgenet.com/

  AForge.NET代码下载:http://code.google.com/p/aforge/

  介绍一下AForge的遗传算法用法吧。AForge.Genetic的类结构如下:

图1. AForge.Genetic的类图

下面用AForge.Genetic写个解决TSP问题的最简单实例。测试数据集采用网上流传的中国31个省会城市的坐标:

13042312
36391315
41772244
37121399
34881535
33261556
32381229
41961004
4312790
4386570
30071970
25621756
27881491
23811676
1332695
37151678
39182179
40612370
37802212
36762578
40292838
42632931
34291908
35072367
33942643
34393201
29353240
31403550
25452357
27782826
23702975

操作过程:

(1) 下载AForge.NET类库,网址:http://code.google.com/p/aforge/downloads/list

(2)
创建C#空项目GenticTSP。然后在AForge目录下找到AForge.dll和AForge.Genetic.dll,将其拷贝到TestTSP项目的bin/Debug目录下。再通过“Add
Reference...”将这两个DLL添加到工程。

(3) 将31个城市坐标数据保存为bin/Debug/Data.txt 。

(4) 添加TSPFitnessFunction.cs,加入如下代码:

TSPFitnessFunction类

using System;
using AForge.Genetic;

namespace GenticTSP
{
///<summary>
/// Fitness function for TSP task (Travaling Salasman Problem)
///</summary>
publicclass TSPFitnessFunction : IFitnessFunction
{
// map
privateint[,] map =null;

// Constructor
public TSPFitnessFunction(int[,] map)
{
this.map = map;
}

///<summary>
/// Evaluate chromosome - calculates its fitness value
///</summary>
publicdouble Evaluate(IChromosome chromosome)
{
return1/ (PathLength(chromosome) +1);
}

///<summary>
/// Translate genotype to phenotype
///</summary>
publicobject Translate(IChromosome chromosome)
{
return chromosome.ToString();
}

///<summary>
/// Calculate path length represented by the specified chromosome
///</summary>
publicdouble PathLength(IChromosome chromosome)
{
// salesman path
ushort[] path = ((PermutationChromosome)chromosome).Value;

// check path size
if (path.Length != map.GetLength(0))
{
thrownew ArgumentException("Invalid path specified - not all cities are visited");
}

// path length
int prev = path[0];
int curr = path[path.Length -1];

// calculate distance between the last and the first city
double dx = map[curr, 0] - map[prev, 0];
double dy = map[curr, 1] - map[prev, 1];
double pathLength = Math.Sqrt(dx * dx + dy * dy);

// calculate the path length from the first city to the last
for (int i =1, n = path.Length; i < n; i++)
{
// get current city
curr = path[i];

// calculate distance
dx = map[curr, 0] - map[prev, 0];
dy = map[curr, 1] - map[prev, 1];
pathLength += Math.Sqrt(dx * dx + dy * dy);// put current city as previousprev = curr;}return pathLength;}}}

(5) 添加GenticTSP.cs,加入如下代码:

GenticTSP类

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;

using AForge;
using AForge.Genetic;

namespace GenticTSP
{
class GenticTSP
{

staticvoid Main()
{
StreamReader reader =new StreamReader("Data.txt");

int citiesCount =31; //城市数

int[,] map =newint[citiesCount, 2];

for (int i =0; i < citiesCount; i++)
{
string value = reader.ReadLine();
string[] temp = value.Split(‘‘);
map[i, 0] =int.Parse(temp[0]); //读取城市坐标
map[i, 1] =int.Parse(temp[1]);
}

// create fitness function
TSPFitnessFunction fitnessFunction =new TSPFitnessFunction(map);

int populationSize = 1000; //种群最大规模

/*
* 0:EliteSelection算法
* 1:RankSelection算法
* 其他:RouletteWheelSelection 算法
* */
int selectionMethod =0;

// create population
Population population =new Population(populationSize,
new PermutationChromosome(citiesCount),
fitnessFunction,
(selectionMethod ==0) ? (ISelectionMethod)new EliteSelection() :
(selectionMethod ==1) ? (ISelectionMethod)new RankSelection() :
(ISelectionMethod)new RouletteWheelSelection()
);

// iterations
int iter =1;
int iterations =5000; //迭代最大周期

// loop
while (iter < iterations)
{
// run one epoch of genetic algorithm
population.RunEpoch();

// increase current iteration
iter++;
}

System.Console.WriteLine("遍历路径是: {0}", ((PermutationChromosome)population.BestChromosome).ToString());
System.Console.WriteLine("总路程是:{0}", fitnessFunction.PathLength(population.BestChromosome));
System.Console.Read();

}
}
}

网上据称这组TSP数据的最好的结果是 15404 ,上面的程序我刚才试了几次最好一次算出了15402.341,但是最差的时候也跑出了大于16000的结果。

我这还有一个版本,设置种群规模为1000,迭代5000次可以算出15408.508这个结果。源代码在文章最后可以下载。

总结一下使用AForge.Genetic解决问题的一般步骤:

(1) 定义适应函数类,需要实现IFitnessFunction接口

(2) 选定种群规模、使用的选择算法、染色体种类等参数,创建种群population

(3)设定迭代的最大次数,使用RunEpoch开始计算

本文源代码下载

分类: 机器学习

时间: 2024-10-21 18:09:17

遗传算法简介的相关文章

搜说算法之遗传算法---遗传算法简介

优化算法入门系列文章目录(更新中): 1. 模拟退火算法 2. 遗传算法 遗传算法 ( GA , Genetic Algorithm ) ,也称进化算法 . 遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法.因此在介绍遗传算法前有必要简单的介绍生物进化知识. 一.进化论知识  作为遗传算法生物背景的介绍,下面内容了解即可: 种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群. 个体:组成种群的单个生物. 基因 ( Gene ) :一个遗传

现代优化算法 之 遗传算法

之前两篇转载的文章: 遗传算法入门到掌握(一).遗传算法入门到掌握(二) 对遗传算法的数学推导讲解得非常详细,同时我也附带了一份遗传算法的C语言实现,这篇文章将要运用遗传算法对一个多项式求最小值,要求在(-8,8)间寻找使表达式达到最小的x,误差为0.001. 但是那篇文章仅仅讲解了关于本例的遗传算法的规则,并没有详细的算法过程. 这篇文章简介一下遗传算法的具体算法过程,并且用MATLAB实现遗传算法的代码,该算法将解决模拟退火一文中的例题. 遗传算法简介 遗传算法(Genetic Algori

使用遗传算法实现迷宫游戏(genetic maze)

强烈推荐一本书 <游戏编程中的人工智能技术>(AI.Techniques.for.Game.Programming).(美)Mat.Buckland 一.缘起 在之前的c印记系列当中有有一个迷宫小游戏,算是一个关于数组应用的例子. 其中有通过接收按键(人工操作)的方式来走出迷宫,也有使用递归算法或非递归算法的方式来实现自动(AI操作)走出迷宫. 后来我对近两三年比较火的人工智能,机器学习,深度学习之类的比较感兴趣了.于是乎,我找了很多书籍或网上的文章来看.但基本上都是两个类别的,其中一类就是一

改进遗传算法优化数据中心动态网络流量分配

背景知识 通常对于大型的数据中心网络(Data Center Networks, 简称DCN)来说,每一台服务器的使用情况是非常不一样的,而平均使用的情况几乎不存在,大部分的情况都是70%的使用和流量需求会集中在一小部分的服务器上,而这个也是通过LAN网络构建云计算中心所必不可免的问题. 如图是大部分情况下数据中心服务器使用的热点情况: 可以看到,其实大部分资源是相对空置的,所以要令数据中心有更高的运算效率,可想而知就是把其他相对空置的服务器利用起来或者把他们的网络流量尽可能的分配给使用度较高的

[MATLAB] 利用遗传算法函数求目标函数的最优解

最近接触到了遗传算法以及利用遗传算法求最优解,所以就把这些相关的内容整理记录一下. 一.遗传算法简介(摘自维基百科) 遗传算法(英语:genetic algorithm (GA))是计算数学中用于解决最佳化的搜索算法,是进化算法的一种.进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传.突变.自然选择以及杂交等. 算法 选择初始生命种群 循环 评价种群中的个体适应度 以比例原则(分数高的挑中概率也较高)选择产生下一个种群. 改变该种群(交叉和变异) 直到停止循环的条件满足

遗传算法优化

1.遗传算法简介 遗传算法是一种基于自然选择和群体遗传机理的搜索算法,它模拟了自然选择和自然遗传过程中的繁殖.杂交和突变现象.再利用遗传算法求解问题时,问题的每一个可能解都被编码成一个“染色体”,即个体,若干个个体构成了群体(所有可能解).在遗传算法开始时,总是随机的产生一些个体(即初始解),根据预定的目标函数对每一个个体进行评估,给出一个适应度值,基于此适应度值,选择一些个体用来产生下一代,选择操作体现了“适者生存”的原理,“好”的个体被用来产生下一代,“坏”的个体则被淘汰,然后选择出来的个体

遗传算法之函数优化

一.遗传算法简介: 遗传算法是模拟生物在自然环境下的遗传和进化过程的一种自适应的全局优化搜索算法,通过借助遗传学的原理,经过自然选择.遗传.变异等作用机制进而筛选出具有适应性更高的个体(适者生存).遗传算法从20世纪七八十年代的诞生到现在主要集中的适用范围为:NP问题(指存在多项式算法能够解决的非决定性问题).非线性.多峰函数优化和多目标优化问题等等.同时在机器学习.模式识别和神经网络及社会科学中的应用也显得非常出色. 二.遗传算法的实现与目的: 实现 :在计算机上模拟生物的进化过程和基因的操作

基于遗传算法的高校排课系统研究

基于遗传算法的高校排课系统研究 沈丽容  陈明磊 (南京林业大学信息学院计算机科学与工程系  南京 210037)     摘  要   提出并实现了一种高校自动排课算法,利用遗传算法建立数据模型,定义一个包含教师编号.班级编号.课程编号.教室编号.上课时间段的染色体编码方案和适应度函数,通过初始化种群.选择.交叉.变异等过程不断进化,最后得到最优解.利用该算法对某高校的真实数据进行实验,结果显示无一例教室.教师.班级冲突,算法具有合理性和可行性.     关键词  遗传算法: 排课问题: 适应

人工神经网络简介和单层网络实现AND运算--AForge.NET框架的使用(五)

原文:人工神经网络简介和单层网络实现AND运算--AForge.NET框架的使用(五) 前面4篇文章说的是模糊系统,它不同于传统的值逻辑,理论基础是模糊数学,所以有些朋友看着有点迷糊,如果有兴趣建议参考相关书籍,我推荐<模糊数学教程>,国防工业出版社,讲的很全,而且很便宜(我买成7元钱). 人工神经网络的简介 人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型.它是一种运算模型,由大量神经元和相互的连接组成,每个神经元代表一种特定的输出函数,称为激励函数(activati