[信息学奥赛一本通oj1741]电子速度 题解

对于$100 \%$的数据,$1≤n,m≤1e6 \ \ \ 0<=x_i,y_i<20170927 \ \ \ 1≤l_i,r_i≤n $

$Solution:$

一开始没看懂题。后来大致理解了一下,所谓的v是一个二维向量,有x和y两个参数。那个$\times$是叉乘,即$(x_i y_j-x_j y_i)$。

所以题意就是给你一个x序列和y序列,对于每次询问的区间$[l,r]$,求$\sum \limits _{l\leq i<j \leq r}(x_iy_j-x_jy_i)^2$。带修。

点对的形式比较麻烦,尝试化成单点的柿子:

先拆平方:

$\sum \limits _{l\leq i<j \leq r}x_i^2y_j^2-2x_ix_jy_iy_j+x_j^2y_i^2$

遍历每个点对就相当与计入每个点的贡献。所以:

$\sum \limits_{i=l}^r x_i^2 \sum \limits _{i=l}^r y_i^2- (\sum \limits_{i=l}^r x_iy_i)^2$

然后开三个树状数组分别维护${x_i}^2,{y_i}^2,x_i y_i$即可。

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
#define pa pair<ll,ll>
typedef long long ll;
const ll mod=20170927;
ll read()
{
    int x=0,f=1;char ch=getchar();
    while(!isdigit(ch)){if(ch==‘-‘)f=-1;ch=getchar();}
    while(isdigit(ch))x=x*10+ch-‘0‘,ch=getchar();
    return x*f;
}
const int N=1e6+5;
int n,m;
ll c[3][N];
pa v[N];
int lb(int x){return x&-x;}
void add(int x,ll val,int id)
{
    for( ;x<=n;x+=lb(x))
        c[id][x]+=val,(c[id][x]+=mod)%=mod;
}
ll query(int x,int id)
{
    ll res=0;
    for( ;x;x-=lb(x))
        (res+=c[id][x])%=mod;
    return (res+mod)%mod;
}
ll ask(int l,int r,int id)
{
    return (query(r,id)-query(l-1,id)+mod)%mod;
}
int main()
{
    n=read();m=read();
    for(int i=1;i<=n;i++)
    {
        v[i].first=read(),v[i].second=read();
        add(i,v[i].first*v[i].first,0);
        add(i,v[i].second*v[i].second,1);
        add(i,v[i].first*v[i].second,2);
    }

    while(m--)
    {
        int op=read();
        if(op==1)
        {
            int pos=read();
            ll x=read(),y=read();
            add(pos,x*x-v[pos].first*v[pos].first,0);
            add(pos,y*y-v[pos].second*v[pos].second,1);
            add(pos,x*y-v[pos].first*v[pos].second,2);
            v[pos].first=x;v[pos].second=y;

        }
        if(op==2)
        {
            int l=read(),r=read();
            ll res=ask(l,r,0)*ask(l,r,1)%mod,res1=ask(l,r,2);
            res=(res-(res1*res1%mod)+mod)%mod;
            printf("%lld\n",res);
        }
    }
    return 0;
}

原文地址:https://www.cnblogs.com/Rorschach-XR/p/11610934.html

时间: 2024-10-03 04:43:10

[信息学奥赛一本通oj1741]电子速度 题解的相关文章

信息学竞赛一本通提高版AC题解—例题1.1活动安排

书中代码有误.书中为sort(a+1,a+n+1,Cmp). // // Created by yuxi on 19-1-13. // /* * * <信息学竞赛一本通-提高版>全部AC解答及解释 * * 第一部分 基础算法 * 第一章 贪心算法 * 例题1 活动安排 * */ #include <iostream> #include <algorithm> #include <fstream> #include <string> using n

信息学奥赛一本通 5.2 树形动态规划

题解在代码中 二叉苹果树[loj 10153] /* 若要留q条边便是要留q+1个点 所以记忆化搜索 dp[pos][ans]=max(dp[pos][ans],dp[l[pos]][k]+dp[r[pos]][ans-k-1]+a[pos]) 0<=k<=ans-1 */ #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<c

信息学奥赛一本通 5.4 状态压缩动态规划

#loj 10170. 「一本通 5.4 例 1」骑士 看数据范围n<=10,所以不是搜索就是状压dp,又因为搜索会超时所以用dp dp[i][k][j]表示现已经放到第i行,前面共有k个,这一行状态为j so,dp[i][k][j]=dp[i-1][k-num[j]][t] #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cma

【信息学奥赛一本通 提高组】第二章 二分与三分

一.二分 二分法,在一个单调有序的集合或函数中查找一个解,每次分为左右两部分,判断解在那个部分并调整上下界,直到找到目标元素,每次二分都将舍弃一般的查找空间,因此效率很高. 二分常见模型 1.二分答案 最小值最大(或是最大值最小)问题,这类双最值问题常常选用二分法求解,也就是确定答案后,配合贪心,DP等其他算法检验这个答案是否合理,将最优化问题转化为判定性问题.例如,将长度为n的序列ai分为最多m个连续段,求所有分法中每段和的最大值的最小是多少? 2.二分查找 用具有单调性的布尔表达式求解分界点

【信息学奥赛一本通】第三部分_栈 ex1_4cale (中缀转后缀7符号)

其实这个中缀转后缀是费了很大功夫的,明白算法后第一次实现花了近三小时ORZ #include <stdio.h> #include <string.h> #include <ctype.h> char Mstr[511],Msta[511] = {'@'},Bstr[511]; int sta[511]; const short list[4][4] = {{0,-1,1,1},{1,0,1,1},{1,1,1,-2},{-1,-1,2,1}}; int level (

【信息学奥赛一本通】第三部分_队列 ex2_3produce 产生数

给出一个整数n(n<=2000)(代码可适用n<=10^31)和k个变换规则(k<=15). 规则:1.1个数字可以变换成另1个数字: 2.规则中右边的数字不能为零. BFS 1 #include <stdio.h> 2 #include <string.h> 3 #define maxn 1000 4 5 char num[33]; 6 int len,q[maxn],Visited[11]; 7 long long ans = 1; 8 9 int main

信息学奥赛一本通 5.1 区间类动态规划

石子合并[loj 10147] /* dp[i][j]=max or min(dp[i][j],dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1]) i<=k<j */ #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> using namespace std; inline int re

信息学奥赛一本通 提高篇 序列第k个数 及 快速幂

我是传送门 这个题首先是先判断是等差还是等比数列 等差的话非常简单: 前后两个数是等差的,举个栗子: 3 6 9 12 这几个数,(我感觉 1 2 3 4并说明不了什么) 每次都加3嘛,很容易看出,第一个数是3 * 1,第二个是3 * 2....以此类推 第k个数 = (第2个数 - 第1个数) * k ; (z - y) * k % 200907 % 200907 的原因是题目要求 但是这样并不能过 hack一下 4 7 10 13 用原先的公式:(7 - 4) * 4 % 200907 =

求后序遍历(信息学奥赛一本通 1339)

假设有棵树,长下面这个样子,它的前序遍历,中序遍历,后续遍历都很容易知道. PreOrder: GDAFEMHZ InOrder: ADEFGHMZ PostOrder: AEFDHZMG 现在,假设仅仅知道前序和中序遍历,如何求后序遍历呢?比如,已知一棵树的前序遍历是"GDAFEMHZ",而中序遍历是"ADEFGHMZ"应该如何求后续遍历? 第一步,root最简单,前序遍历的第一节点G就是root. 第二步,继续观察前序遍历GDAFEMHZ,除了知道G是root,