对于$100 \%$的数据,$1≤n,m≤1e6 \ \ \ 0<=x_i,y_i<20170927 \ \ \ 1≤l_i,r_i≤n $
$Solution:$
一开始没看懂题。后来大致理解了一下,所谓的v是一个二维向量,有x和y两个参数。那个$\times$是叉乘,即$(x_i y_j-x_j y_i)$。
所以题意就是给你一个x序列和y序列,对于每次询问的区间$[l,r]$,求$\sum \limits _{l\leq i<j \leq r}(x_iy_j-x_jy_i)^2$。带修。
点对的形式比较麻烦,尝试化成单点的柿子:
先拆平方:
$\sum \limits _{l\leq i<j \leq r}x_i^2y_j^2-2x_ix_jy_iy_j+x_j^2y_i^2$
遍历每个点对就相当与计入每个点的贡献。所以:
$\sum \limits_{i=l}^r x_i^2 \sum \limits _{i=l}^r y_i^2- (\sum \limits_{i=l}^r x_iy_i)^2$
然后开三个树状数组分别维护${x_i}^2,{y_i}^2,x_i y_i$即可。
#include<cstdio> #include<iostream> #include<cstring> using namespace std; #define pa pair<ll,ll> typedef long long ll; const ll mod=20170927; ll read() { int x=0,f=1;char ch=getchar(); while(!isdigit(ch)){if(ch==‘-‘)f=-1;ch=getchar();} while(isdigit(ch))x=x*10+ch-‘0‘,ch=getchar(); return x*f; } const int N=1e6+5; int n,m; ll c[3][N]; pa v[N]; int lb(int x){return x&-x;} void add(int x,ll val,int id) { for( ;x<=n;x+=lb(x)) c[id][x]+=val,(c[id][x]+=mod)%=mod; } ll query(int x,int id) { ll res=0; for( ;x;x-=lb(x)) (res+=c[id][x])%=mod; return (res+mod)%mod; } ll ask(int l,int r,int id) { return (query(r,id)-query(l-1,id)+mod)%mod; } int main() { n=read();m=read(); for(int i=1;i<=n;i++) { v[i].first=read(),v[i].second=read(); add(i,v[i].first*v[i].first,0); add(i,v[i].second*v[i].second,1); add(i,v[i].first*v[i].second,2); } while(m--) { int op=read(); if(op==1) { int pos=read(); ll x=read(),y=read(); add(pos,x*x-v[pos].first*v[pos].first,0); add(pos,y*y-v[pos].second*v[pos].second,1); add(pos,x*y-v[pos].first*v[pos].second,2); v[pos].first=x;v[pos].second=y; } if(op==2) { int l=read(),r=read(); ll res=ask(l,r,0)*ask(l,r,1)%mod,res1=ask(l,r,2); res=(res-(res1*res1%mod)+mod)%mod; printf("%lld\n",res); } } return 0; }
原文地址:https://www.cnblogs.com/Rorschach-XR/p/11610934.html
时间: 2024-10-03 04:43:10