什么是流式计算?

一、流式计算的背景

在日常生活中,我们通常会先把数据存储在一张表中,然后再进行加工、分析,这里就涉及到一个时效性的问题。如果我们处理以年、月为单位的级别的数据,那么多数据的实时性要求并不高;但如果我们处理的是以天、小时,甚至分钟为单位的数据,那么对数据的时效性要求就比较高。在第二种场景下,如果我们仍旧采用传统的数据处理方式,统一收集数据,存储到数据库中,之后在进行分析,就可能无法满足时效性的要求。

二、流式计算与批量计算

大数据的计算模式主要分为批量计算(batch computing)、流式计算(stream computing)、交互计算(interactive computing)、图计算(graph computing)等。其中,流式计算和批量计算是两种主要的大数据计算模式,分别适用于不同的大数据应用场景。
流数据(或数据流)是指在时间分布和数量上无限的一系列动态数据集合体,数据的价值随着时间的流逝而降低,因此必须实时计算给出秒级响应。流式计算,顾名思义,就是对数据流进行处理,是实时计算。批量计算则统一收集数据,存储到数据库中,然后对数据进行批量处理的数据计算方式。主要体现在以下几个方面:
1、数据时效性不同:流式计算实时、低延迟, 批量计算非实时、高延迟。
2、数据特征不同:流式计算的数据一般是动态的、没有边界的,而批处理的数据一般则是静态数据。
3、应用场景不同:流式计算应用在实时场景,时效性要求比较高的场景,如实时推荐、业务监控...批量计算一般说批处理,应用在实时性要求不高、离线计算的场景下,数据分析、离线报表等。
4、运行方式不同,流式计算的任务持续进行的,批量计算的任务则一次性完成。

三、流式计算框架、平台与相关产品

第一类,商业级流式计算平台(IBM InfoSphere Streams、IBM StreamBase等);
第二类,开源流式计算框架(Twitter Storm、S4等);
第三类,公司为支持自身业务开发的流式计算框架。
Strom:Twitter 开发的第一代流处理系统。
Heron:Twitter 开发的第二代流处理系统。
Spark streaming:是Spark核心API的一个扩展,可以实现高吞吐量的、具备容错机制的实时流数据的处理。
Flink:是一个针对流数据和批数据的分布式处理引擎。
Apache Kafka:由Scala写成。该项目的目标是为处理实时数据提供一个统一、高通量、低等待的平台。

四、流式计算主要应用场景

流式处理可以用于两种不同场景: 事件流和持续计算。
1、事件流
事件流具能够持续产生大量的数据,这类数据最早出现与传统的银行和股票交易领域,也在互联网监控、无线通信网等领域出现、需要以近实时的方式对更新数据流进行复杂分析如趋势分析、预测、监控等。简单来说,事件流采用的是查询保持静态,语句是固定的,数据不断变化的方式。
2、持续计算
比如对于大型网站的流式数据:网站的访问PV/UV、用户访问了什么内容、搜索了什么内容等,实时的数据计算和分析可以动态实时地刷新用户访问数据,展示网站实时流量的变化情况,分析每天各小时的流量和用户分布情况;
比如金融行业,毫秒级延迟的需求至关重要。一些需要实时处理数据的场景也可以应用Storm,比如根据用户行为产生的日志文件进行实时分析,对用户进行商品的实时推荐等。

五、流式计算的价值

通过大数据处理我们获取了数据的价值,但是数据的价值是恒定不变的吗?显然不是,一些数据在事情发生后不久就有了更高的价值,而且这种价值会随着时间的推移而迅速减少。流处理的关键优势在于它能够更快地提供洞察力,通常在毫秒到秒之间。
流式计算的价值在于业务方可在更短的时间内挖掘业务数据中的价值,并将这种低延迟转化为竞争优势。比方说,在使用流式计算的推荐引擎中,用户的行为偏好可以在更短的时间内反映在推荐模型中,推荐模型能够以更低的延迟捕捉用户的行为偏好以提供更精准、及时的推荐。
流式计算能做到这一点的原因在于,传统的批量计算需要进行数据积累,在积累到一定量的数据后再进行批量处理;而流式计算能做到数据随到随处理,有效降低了处理延时。

原文地址:https://blog.51cto.com/13945147/2436907

时间: 2024-10-05 21:54:03

什么是流式计算?的相关文章

流式计算-Jstorm提交Topology过程(下)

紧接上篇流式计算-Jstorm提交Topology过程(上), 5.上篇任务已经ServiceHandler.submitTopologyWithOpts()方法,在该方法中,会实例化一个TopologyAssignEvent,相当于创建了一个topology级别的作业,然后将其保存到TopologyAssign的任务队列中,具体代码如下: TopologyAssignEvent assignEvent = new TopologyAssignEvent(); assignEvent.setTo

大数据技术(1)流式计算与Storm

2011年在海量数据处理领域,Hadoop是人们津津乐道的技术,Hadoop不仅可以用来存储海量数据,还以用来计算海量数据.因为其高吞吐.高可靠等特点,很多互联网公司都已经使用Hadoop来构建数据仓库,高频使用并促进了Hadoop生态圈的各项技术的发展.一般来讲,根据业务需求,数据的处理可以分为离线处理和实时处理,在离线处理方面Hadoop提供了很好的解决方案,但是针对海量数据的实时处理却一直没有比较好的解决方案. 就在人们翘首以待的时间节点,storm横空出世,与生俱来的分布式.高可靠.高吞

流式计算框架-STORM简介

在当前的数据分析领域,对实时数据的计算需求越来越强烈,在此领域,出现了各类计算框架,如:Storm.S4等.目前本土公司对这些流式计算框架的应用也比较广泛,但苦于相关文档英文居多,缺少成系列且与官方相对应的中文手册.本系列试图从官方文档翻译入手,给大家呈现较为完备的中文资料,同时也是对自身知识的总结沉淀. 在这个系列博客中,我们选择了twitter的Storm框架,原因很简单,因为本人长期使用的就是该框架,咱们先从简介开始. Apache Storm是一个免费.开源.分布式的实时计算系统.相对于

大数据读书笔记(2)-流式计算

早期和当前的"流式计算"系统分别称为"连续查询处理类"和"可扩展数据流平台类"计算系统. 流式计算系统的特点: 1)低延迟 2)极佳的系统容错性 3)极强的系统扩展能力 4)灵活强大的应用逻辑表达能力 目前典型的流式计算系统: S4,storm,millwheel,samza,d-stream,hadoop online,mupd8等. 其中storm和millwheel是各方面比较突出的. 流式计算系统架构: 常见的流式计算系统架构分为两种:主

流式计算形态下的大数据分析

1 介 绍 1.1 流式计算介绍 流式大数据计算主要有以下特征: 1)实时性.流式大数据不仅是实时产生的,也是要求实时给出反馈结果.系统要有快速响应能力,在短时间内体现出数据的价值,超过有效时间后数据的价值就会迅速降低. 2)突发性.数据的流入速率和顺序并不确定,甚至会有较大的差异.这要求系统要有较高的吞吐量,能快速处理大数据流量. 3)易失性.由于数据量的巨大和其价值随时间推移的降低,大部分数据并不会持久保存下来,而是在到达后就立刻被使用并丢弃.系统对这些数据有且仅有一次计算机会. 4)无限性

流式计算(一)-Java8Stream

大约各位看官君多少也听说了Storm/Spark/Flink,这些都是大数据流式处理框架.如果一条手机组装流水线上不同的人做不同的事,有的装电池,有的装屏幕,直到最后完成,这就是典型的流式处理.如果手机组装是先全部装完电池,再交给装屏幕的组,直到完成,这就是旧式的集合式处理.今天,就来先说说JDK8中的流,虽然不是很个特新鲜的话题,但是一个很好的开始,因为——思想往往比细节重要! 准备: Idea2019.03/Gradle5.6.2/JDK11.0.4/Lambda 难度:新手--战士--老兵

流式计算(二)-Kafka Stream

前面说了Java8的流,这里还说流处理,既然是流,比如水流车流,肯定得有流的源头,源可以有多种,可以自建,也可以从应用端获取,今天就拿非常经典的Kafka做源头来说事,比如要来一套应用日志实时分析框架,或者是高并发实时流处理框架,正是Kafka的拿手好戏. 环境:Idea2019.03/Gradle6.0.1/JDK11.0.4/Lambda/RHEL8.0/VMWare15.5/Springboot2.2.1.RELEASE/Zookeeper3.5.5/Kafka2.3.1 难度:新手--战

流式计算(五)-Flink核心概念

一手资料,完全来自官网,直接参考英文过来的,并加了一些自己的理解,希望能让看官君了解点什么,足矣. 环境:Flink1.9.1 难度:新手--战士--老兵--大师 目标: 理解Flink的计算模型 认识各重要组件 说明: 本篇作为前两篇的补充内容,算是理论篇 步骤: 01-Flink编程模型 Flink的流计算整体来看都是按照Source -> Transformation -> Sink三步走,即获取流源 -> 进行转换 -> 汇聚(Sink),但“转换 (Transformat

Strom流式计算

序言 主要学习方向 Kafka 分布式消息系统 Redis 缓存数据库 Storm 流式计算 1.Storm 的基本概念 2.Storm 的应用场景 3.Storm 和Hadoop的对比 4.Storm 集群的安装的linux环境准备 5.zookeeper集群搭建 6.Storm 集群搭建 7.Storm 配置文件配置项讲解 8.集群搭建常见问题解决 9.Storm 常用组件和编程 API:Topology. Spout.Bolt 10.Storm分组策略(stream groupings)