逻辑斯蒂回归(logisic regression)和SVM的异同

逻辑斯蒂回归主要用于二分类,推广到多分类的话是类似于softmax分类。求

上述问题可以通过最大化似然函数求解。

上述问题可以采用最小化logloss进行求解。

一般地,我们还需要给目标函数加上正则项,参数w加上l1或者l2范数。

LR适合大规模数据,数据量太小的话可能会欠拟合(考虑到数据通常比较稀疏)。另外,我们可以将连续型属性转化成离散型属性,这样可以提升模型的鲁棒性,防止模型过拟合。

LR和SVM的异同点

相同点

1.他们都是分类算法,是监督学习算法。

2.如果不考虑核函数,LR和SVM都是线性分类算法,他们的分类决策面是线性的。

3.LR和SVM都是判别模型。

不同点

1.目标函数不同:LR最小化logloss或者极大化似然函数,SVM最大化几何间隔,支持向量离超平面越远越好。最后SVM的目标函数可以写成如下拉格朗日函数:

 SVM只考虑局部的边界线附近的点(支持向量),LR考虑全局的点,远离边界线的点也起作用。LR适合大型数据集,SVM适合中小型数据集。

2.解决非线性问题时,SVM采用核函数,而LR不采用核函数的方法,一般需要对数据进行预处理(高阶特征)。

3.线性SVM依赖数据表达的距离测量,需要先对数据做标准化处理,而LR不受影响。为了加快收敛速度,LR通常也会先对数据做标准化处理。

4.SVM的损失函数自带正则,即$\frac{1}{2}||w||^2$,因此SVM是结构风险最小化算法。LR是经验风险最小化算法,需要在损失函数上添加正则项。

原文地址:https://www.cnblogs.com/xiaoyunjun/p/11370905.html

时间: 2024-11-03 22:42:13

逻辑斯蒂回归(logisic regression)和SVM的异同的相关文章

梯度下降法解逻辑斯蒂回归

梯度下降法解逻辑斯蒂回归 本文是Andrew Ng在Coursera的机器学习课程的笔记. Logistic回归属于分类模型.回顾线性回归,输出的是连续的实数,而Logistic回归输出的是[0,1]区间的概率值,通过概率值来判断因变量应该是1还是0.因此,虽然名字中带着"回归"(输出范围常为连续实数),但Logistic回归属于分类模型(输出范围为一组离散值构成的集合). 整体步骤 假如我们的自变量是"数学课和英语课的成绩",x={x1,x2},因变量是"

逻辑斯蒂回归

1,逻辑斯蒂回归问题有一组病人的数据,我们需要预测他们在一段时间后患上心脏病的“可能性”,就是我们要考虑的问题.通过二值分类,我们仅仅能够预测病人是否会患上心脏病,不同于此的是,现在我们还关心患病的可能性,即 f(x) = P(+1|x),取值范围是区间 [0,1]. 然而,我们能够获取的训练数据却与二值分类完全一样,x 是病人的基本属性,y 是+1(患心脏病)或 -1(没有患心脏病).输入数据并没有告诉我们有关“概率” 的信息. 在二值分类中,我们通过w*x 得到一个"score"

用二项逻辑斯蒂回归解决二分类问题

逻辑斯蒂回归: 逻辑斯蒂回归是统计学习中的经典分类方法,属于对数线性模型.logistic回归的因变量可以是二分类的, 也可以是多分类的 基本原理 logistic 分布 折X是连续的随机变量,X服从logistic分布是指X具有下列分布函数和密度函数: 其中为位置参数,为形状参数.与图像如下,其中分布函数是以为中心对阵,越小曲线变化越快 二项logistic回归模型: 二项logistic回归模型如下: 其中是输入,输出,W称为权值向量,b称为偏置, 是w和x的内积 参数估计 ? 假设: ?

第六章 逻辑斯蒂回归与最大熵模型

书中重要定义及一些理解 先通过介绍逻辑史蒂的分布来引出logist模型 而通过极大似然法来推导模型的参数估计问题 通过对模型参数的似然函数通过求导来得到递归方程 通过公式可以看出logist是对前面的感知机的升级版,感知机的判断方式过于简单.而其梯度下降的时候也将sign的去掉了,否则无法微分. 后通过方程来写出公式,代码如下 import numpy as np from read_data import get_2_kind_data def logistic_Regression(tra_

逻辑斯蒂回归(Logistic Regression)

逻辑回归名字比较古怪,看上去是回归,却是一个简单的二分类模型. 逻辑回归的目标函数是如下形式: 其中x是features,θ是feature的权重,σ是sigmoid函数.将θ0视为θ0*x0(x0取值为常量1),那么 这里我们取阈值为0.5,那么二分类的判别公式为: 下面说一下参数θ的求解: 为啥子这样去损失函数呢? 当y=1的时候,显然hθ(x)越接近1我们的预测越靠谱:y=0时同理.所以应该在y=1时,使损失韩式-log(hθ(x))越小越好,y=0时,同样使损失函数-log(1-hθ(x

为什么逻辑斯特回归(logistic regression)是线性模型

一个典型的logistic regression模型是: 这里明明用了非线性函数,那为什么logistic regression还是线性模型呢? 首先,这个函数不是f(y,x)=0的函数,判断一个模型是否是线性,是通过分界面是否是线性来判断的. 这个P函数是y关于x的后验概率,它的非线性性不影响分界面的线性性.可以通过令两种类别的概率相等,求解x的表达式,如果是线性的,那么就是线性模型. 打破线性也很简单,只要变量之间相乘一下,或者使用非线性函数. 容易得出,softmax regression

逻辑斯蒂回归模型

http://blog.csdn.net/hechenghai/article/details/46817031 主要参照统计学习方法.机器学习实战来学习.下文作为参考. 第一节中说了,logistic 回归和线性回归的区别是:线性回归是根据样本X各个维度的Xi的线性叠加(线性叠加的权重系数wi就是模型的参数)来得到预测值的Y,然后最小化所有的样本预测值Y与真实值y‘的误差来求得模型参数.我们看到这里的模型的值Y是样本X各个维度的Xi的线性叠加,是线性的. Y=WX (假设W>0),Y的大小是随

[转]逻辑斯蒂回归 via python

# -*- coding:UTF-8 -*-import numpydef loadDataSet(): return dataMat,labelMat def sigmoid(inX): return 1.0/(1+numpy.exp(-inX)) def gradAscent(dataMatIn,classLabels): dataMatrix=numpy.mat(damaMatIn) labelMat=numpy.mat(classLabels).transpose() #上升梯度 alp

《统计学习方法》第六章,逻辑斯蒂回归

? 使用逻辑地模型来进行分类,可以算出每个测试样本分属于每个类别的概率 ● 二分类代码 1 import numpy as np 2 import matplotlib.pyplot as plt 3 from mpl_toolkits.mplot3d import Axes3D 4 from mpl_toolkits.mplot3d.art3d import Poly3DCollection 5 from matplotlib.patches import Rectangle 6 7 data