超高维度分析,N*P的矩阵,N为样本个数,P为指标,N<<P
PCA:抓住对y对重要的影响因素
主要有三种:PCA,因子分析,回归方程+惩罚函数(如LASSO)
为了降维,用更少的变量解决问题,如果是二维的,那么就是找到一条线,要使这些点再线上的投影最大,投影最大,就是越分散,就考虑方差最大。
原文地址:https://www.cnblogs.com/caiyishuai/p/11169073.html
时间: 2024-10-09 02:28:23
超高维度分析,N*P的矩阵,N为样本个数,P为指标,N<<P
PCA:抓住对y对重要的影响因素
主要有三种:PCA,因子分析,回归方程+惩罚函数(如LASSO)
为了降维,用更少的变量解决问题,如果是二维的,那么就是找到一条线,要使这些点再线上的投影最大,投影最大,就是越分散,就考虑方差最大。
原文地址:https://www.cnblogs.com/caiyishuai/p/11169073.html