hdu多校第三场 1006 (hdu6608) Fansblog Miller-Rabin素性检测

题意:

给你一个1e9-1e14的质数P,让你找出这个质数的前一个质数Q,然后计算Q!mod P

题解:

1e9的数据范围pass掉一切素数筛法,考虑Miller-Rabin算法。

米勒拉宾算法是一种判断素数的随机化算法,由于其随机性,它不能保证总是正确的,但其对于一个素数,总会返回素数的结果,对于一个合数,才有极小概率返回素数的结果(假阳性)。

米勒拉宾算法对于单个素数的判断时间复杂度为$O(log^3n)$.(因为1e14相乘会爆longlong,模乘要写成龟速乘,因此要多一个log)

1849年,高斯猜想,素数分布密度符合如下的公式,$π(x)≈x/lnx$,其中$π(x)$为不超过x的素数个数,根据这个公式,1e14以内,两个素数间隔平均只有46个左右,相当稠密了。

因此,只需要用米勒拉宾算法从P-1一个一个判断,直到找到另一个素数Q。

再给出一个结论,对于任意素数n,(n-2)! mod n = 1,因为从2到n-2,互为模n逆元的数捉对出现,证明可参考离散数学课本数论部分。

因此,计算Q! mod p只需计算$\pi^{P-2}_{Q+1}$再利用费马小定理快速幂求逆元即可。

需要注意,1e14相乘会爆longlong,可以用_int128,但稳妥一点的方法是用思想类似于快速幂的龟速乘。

#include<bits/stdc++.h>
#define Times 10
#define LL long long
#define ll long long
using namespace std;

ll multi(ll a, ll b, ll m) {
    ll ans = 0; a %= m;
    while (b) {
        if (b & 1)ans = (ans + a) % m;
        a = (a + a) % m; b >>= 1;
    } return ans;
}

ll quick_mod(ll a, ll b, ll m) {
    ll ans = 1; a %= m;
    while (b) {
        if (b & 1)ans = multi(ans, a, m);
        a = multi(a, a, m); b >>= 1;
    } return ans;
}

bool Miller_Rabin(ll n) {
    if (n == 2)return true;
    if ((n < 2) || !(n & 1))return false;
    ll m = n - 1;
    ll k = 0;
    while ((m & 1) == 0) {
        k++; m >>= 1;
    }
    for (ll i = 0; i < Times; i++) {
        ll a = rand() % (n - 1) + 1;
        ll x = quick_mod(a, m, n);
        ll y = 0;
        for (ll j = 0; j < k; j++) {
            y = multi(x, x, n);
            if (y == 1 && x != 1 && x != n - 1)return false;
            x = y;
        } if (y != 1)return false;
    } return true;
}

long long quick_mul(long long x,long long y,long long mod)
{
    long long ans=0;
    while(y!=0){
        if(y&1==1)ans+=x,ans%=mod;
        x=x+x,x%=mod;
        y>>=1;
    }
    return ans;
}
long long quick_pow(long long x,long long y,long long mod)
{
    long long sum=1;
    while(y!=0){
         if(y&1==1)sum=quick_mul(sum,x,mod),sum%=mod;
             x=quick_mul(x,x,mod),x%=mod;
              y=y>>1;
    }
    return sum;
}

int main(){
//    LL pp=1;
//    for(int i=1;i<=999999937;i++){
//        pp=pp*i%1000000007;
//    }
//    printf("%lld\n",pp);
    int t;
    scanf("%d",&t);
    while(t--){
        LL q;
        scanf("%lld",&q);
        LL p;
        for(register LL i=q-2;;i-=2){
            if(Miller_Rabin(i)){
                p=i;break;
            }
        }
//        printf("%d\n",p);
        LL ans=1;

        for(LL j=p+1;j<=q-2;j++){
            ans=quick_mul(ans,j,q);
        }
        printf("%lld\n",quick_pow(ans,q-2,q));
    }
    return 0;
}

原文地址:https://www.cnblogs.com/isakovsky/p/11270257.html

时间: 2024-10-05 06:17:53

hdu多校第三场 1006 (hdu6608) Fansblog Miller-Rabin素性检测的相关文章

2018 HDU多校第三场赛后补题

2018 HDU多校第三场赛后补题 从易到难来写吧,其中题意有些直接摘了Claris的,数据范围是就不标了. 如果需要可以去hdu题库里找.题号是6319 - 6331. L. Visual Cube 题意: 在画布上画一个三维立方体. 题解: 模拟即可. 代码: #include <bits/stdc++.h> using namespace std; int a, b, c, R, C; char g[505][505]; int main () { int T; cin >>

hdu多校第三场 1007 (hdu6609) Find the answer 线段树

题意: 给定一组数,共n个,第i次把第i个数扔进来,要求你删掉前i-1个数中的一些(不许删掉刚加进来这个数),使得前i个数相加的和小于m.问你对于每个i,最少需要删掉几个数字. 题解: 肯定是优先删大数,一开始想的方法类似于尺取,就是维护一个大顶堆作为现有的数,小顶堆作为要删的数,每次大顶堆的元素总和大于m了,就把堆顶扔进小顶堆,扔完了,再把小顶堆的堆顶扔回大顶堆,在会导致大顶堆值总和大于m时停止. 但是很容易会被1 1 1 1 1 1 1 1 1 1 100 这样的数据卡掉. 然后想到了,维护

2014多校第三场1005 || HDU 4891 The Great Pan(模拟)

题目链接 题意 : 给你n行字符串,问你有多少种理解方式.有两大类的理解 (1){A|B|C|D|...}代表着理解方式可以是A,可以是B或C或者D. (2)$blah blah$,在$$这两个符号中间,如果是不连续的空格的那个位置就有2种理解方式,可以理解为没有空格也可以理解为有空格.如果有连续N个空格的位置,那里就有N+1种理解方式. 最后所有的理解方式相乘,数据保证$一定与$匹配,{一定与匹配},不会有任何嵌套,类似{$$}或者{{}}或者${}$这种情况都不会出现,也不会有{$}这种情况

2014 HDU多校弟五场J题 【矩阵乘积】

题意很简单,就是两个大矩阵相乘,然后求乘积. 用 Strassen算法 的话,当N的规模达到100左右就会StackOverFlow了 况且输入的数据范围可达到800,如果变量还不用全局变量的话连内存开辟都开不出来 1 #pragma comment(linker, "/STACK:16777216") 2 #include <iostream> 3 #include <stdio.h> 4 #define ll long long 5 using namesp

2014 HDU多校弟八场H题 【找规律把】

看了解题报告,发现看不懂 QAQ 比较简单的解释是这样的: 可以先暴力下达标,然后会发现当前数 和 上一个数 的差值是一个 固定值, 而且等于当前数与i(第i个数)的商, 于是没有规律的部分暴力解决,有规律的套公式 //#pragma comment(linker, "/STACK:16777216") //for c++ Compiler #include <stdio.h> #include <iostream> #include <cstring&g

2014 HDU多校弟九场I题 不会DP也能水出来的简单DP题

听了ZWK大大的思路,就立马1A了 思路是这样的: 算最小GPA的时候,首先每个科目分配到69分(不足的话直接输出GPA 2),然后FOR循环下来使REMAIN POINT减少,每个科目的上限加到100即可 算最大GPA的时候,首先每个科目分配到60分,然后FOR循环下来使REMAIN POINT减少,每个科目的上限加到85即可,如果还有REMAIN POINT,就FOR循环下来加到100上限即可 不会DP 阿 QAQ 过段时间得好好看DP了  =  = 于是默默的把这题标记为<水题集> //

hdu-4893-Wow! Such Sequence!-线段树【2014多校第三场-J】

题意:一个初始为0的数组,支持三种操作:1.向第k个数添加d,(|d| < 2^31);2.把[l, r]区间内的数字都换成与它最相近的Fibonacci数;3.询问[l, r]区间的和. 思路:初始化Fibonacci数组,longlong 类型内90个就够用了. 线段树区间查询,用lazy标记, sgt[]记录线段树各个节点的区间和, fib_num_sum[]记录与各个叶子节点当前值最接近的Fibonacci数,传递到区间fib_num_sum[]就是区间Fibonacci数的和. 操作1

2014 HDU多校弟五场A题 【归并排序求逆序对】

这题是2Y,第一次WA贡献给了没有long long 的答案QAQ 题意不难理解,解题方法不难. 先用归并排序求出原串中逆序对的个数然后拿来减去k即可,如果答案小于0,则取0 学习了归并排序求逆序对的方法,可以拿来当模板 TVT 贴代码了: 1 #include <stdio.h> 2 #include <string.h> 3 #include <stdlib.h> 4 #include <math.h> 5 #include <iostream&g

2014 HDU多校弟六场J题 【模拟斗地主】

这是一道5Y的题目 有坑的地方我已在代码中注释好了 QAQ Ps:模拟题还是练的太少了,速度不够快诶 //#pragma comment(linker, "/STACK:16777216") //for c++ Compiler #include <stdio.h> #include <iostream> #include <climits> #include <cstring> #include <cmath> #inclu