SDOI2013 直径(树的直径必经边)

SDOI2013 直径

题目传送

sol:

先求出任一直径同时把直径拎出来,树的非直径部分全部挂在直径上(如下)。

对于直径上的每一个点i,如果存在它到非直径上点的最大距离\(g[i]\)等于它到直径两端点中较短的那一段\(d[i]\),

则说明这一段也可以成为直径中的一部分。

而我们需要得到所有直径的交,画图可以发现假设两端(以中点为界)都存在上述的点,最逼近的两点间的边即为所求!

具体可以看代码实现。

code:

#include<bits/stdc++.h>
#define IL inline
#define RG register
#define DB double
#define LL long long
using namespace std;

IL int gi() {
    RG int x=0,p=1; RG char ch=getchar();
    while(ch<'0'||ch>'9') {if(ch=='-') p=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+(ch^48),ch=getchar();
    return x*p;
}

const int N=2e5+3;

LL mx,len,d[N],s[N],g[N];
int n,l,r,S,T,cnt,tot,ans,f[N],fa[N],vis[N],head[N];

struct EDGE{int next,to,v;}e[N<<1];

IL void make(int x,int y,int z) {
    e[++tot]=(EDGE){head[x],y,z},head[x]=tot;
    e[++tot]=(EDGE){head[y],x,z},head[y]=tot;
}

void dfs(int x,int fx) {
    RG int i,y;
    for(i=head[x];i;i=e[i].next)
        if((y=e[i].to)!=fx) d[y]=d[x]+e[i].v,fa[y]=x,dfs(y,x);
}

void dfs2(int x,int fx,int RT) {
    RG int i,y;
    if(d[x]>g[RT]) g[RT]=d[x];
    for(i=head[x];i;i=e[i].next)
        if((y=e[i].to)!=fx&&!vis[y])
            d[y]=d[x]+e[i].v,dfs2(y,x,RT);
}

int main()
{
    RG int i,j,x,y,z;
    for(i=1,n=gi();i<n;++i) x=gi(),y=gi(),z=gi(),make(x,y,z);
    for(i=1,dfs(1,0);i<=n;++i)
        if(d[i]>mx) mx=d[i],S=i;
    mx=d[S]=0,fa[S]=0,dfs(S,0);
    for(i=1;i<=n;++i)
        if(d[i]>mx) mx=d[i],T=i;
    printf("%lld\n",len=mx);
    for(i=T;i;i=fa[i]) vis[i]=1,f[++cnt]=i,s[i]=d[i];
    for(i=2;i<cnt;++i)
        d[f[i]]=0,dfs2(f[i],0,f[i]);
    for(i=1;len-s[f[i]]<=s[f[i]];++i)
        if(len-s[f[i]]==g[f[i]]) l=i;
    for(j=cnt;len-s[f[j]]>=s[f[j]];--j)
        if(s[f[j]]==g[f[j]]) r=j;
    printf("%d\n",ans=r-l);
    return 0;
}
//树的直径和直径必经边

原文地址:https://www.cnblogs.com/Bhllx/p/11247456.html

时间: 2024-12-15 11:42:02

SDOI2013 直径(树的直径必经边)的相关文章

[SDOI2013]直径 (树的直径,贪心)

题目链接 Solution 我们直接找到一条直径 \(s\),起点为 \(begin\),终点为 \(end\). 从前往后遍历点 \(u\) ,若子树中最大的距离与 \(dis(u,begin)\) 相等. 很显然这个点不在公共线段上,很显然可以用子树的中的一段接上,形成一条新的直径. 然后从后往前遍历,同样的道理... 然后找到两个节点 \(l,r\) 然后答案即为 \(r-l\). 记得要开 \(longlong\). Code #include<bits/stdc++.h> #defi

树的直径、树的重心与树的点分治

树的直径 树的直径(Diameter)是指树上的最长简单路. 直径的求法:两遍搜索 (BFS or DFS) 任选一点w为起点,对树进行搜索,找出离w最远的点u. 以u为起点,再进行搜索,找出离u最远的点v.则u到v的路径长度即为树的直径. 简单证明: 如果w在直径上,那么u一定是直径的一个端点.反证:若u不是端点,则从直径另一端点到w再到u的距离比直径更长,与假设矛盾. 如果w不在直径上,且w到其距最远点u的路径与直径一定有一交点c,那么由上一个证明可知,u是直径的一个端点. 如果w到最远点u

树的直径与树的重心

树的直径 树的直径是指树上的最长简单路. 直径的求法:两遍搜索 任选一点w为起点,对树进行搜索,找出离w最远的点u. 以u为起点,再进行搜索,找出离u最远的点v. 则u到v的路径长度即为树的直径. ---------------------------------------------------------------- 树的重心树的重心: 找到一个点,其所有的子树中最大的子树节点数最少,那么这个点就是这棵树的重心. 删去重心后,生成的多棵树尽可能平衡. 树的重心可以通过简单的两次搜索求出,

hdu 4612 缩点 桥 树的直径

// http://acm.hdu.edu.cn/showproblem.php?pid=4612 // 大致题意: 给n个点和m条边,组成一个无向连通图,问  给我加一条边的权力(可连接任意两点)->让图的桥数量最小,输出此时桥的数量.(2<=N<=200000, 1<=M<=1000000) // 无向环里面的边没有桥,缩点,因为是连通图,所以缩完点后构成了一棵树,每条树边都是一个桥.要加一条边使得加完后图的桥数最小,结合上述,所以选择连接树直径的两端点.ans = 原先

[树的直径] SDOI2013 直径

SDOI2013 直径 题目描述 小Q最近学习了一些图论知识.根据课本,有如下定义.树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度.如果一棵树有N个节点,可以证明其有且仅有N-1 条边. 路径:一棵树上,任意两个节点之间最多有一条简单路径.我们用 dis(a,b)表示点a和点b的路径上各边长度之和.称dis(a,b)为a.b两个节点间的距离. 直径:一棵树上,最长的路径为树的直径.树的直径可能不是唯一的. 现在小Q想知道,对于给定的一棵树,其直径的长度是多少,以及有多少条边满足所有

poj 1985 Cow Marathon 【树的直径】

题目:poj 1985 Cow Marathon 题意:给出一个树,让你求树的直径. 分析: 树的直径:树上两点之间的最大距离. 我们从任意一点出发,BFS一个最远距离,然后从这个点出发,在BFS一个最远距离,就是树的直径. AC代码: /* POJ:1985 Cow Marathon 2014/10/12/21:18 Yougth*/ #include <cstdio> #include <iostream> #include <algorithm> #include

poj1849(求树的直径)

题目链接:http://poj.org/problem?id=1849 题意:有一颗n个结点的带权的无向树, 在s结点放两个机器人, 这两个机器人会把树的每条边都走一遍, 但是最后机器人不要求回到出发点. 问你两个机器人走的路总长之和的最小值是多少? 分析:如果从某点出发遍历完一棵树再回来,那么所有边都会走两遍,而从某点有两个机器人出发去遍历,因为不用回来,所以最后那两个人距离越远越好,可以从树的直径上某个点背道而驰,那么这段距离(树的直径)只走了一遍,其他的要走两遍,所以ans=sum*2-l

SDUT OJ 3045 迷之图论 (树的直径)

题目地址:SDUT OJ 3045 这题比赛的时候想的差不多..但是总是觉得不对..写了一次就没再写,然后删了..当时没想到的是第二次求出来的就是最长链..当时想到的两次bfs找最大值(这一种方法其实结果也对..TAT..),还有找到点后在回溯减去重点等等..但总觉得好像都不太对...赛后才知道这题原来是树的直径.....牡丹江区域现场赛的时候遇到过,不过赛后也没看... 找树的直径的方法其实就是先任取一点进行bfs,找到最远的一点,这时最远的一点肯定是最长链端点之一,然后再从这一最远点开始bf

hdu4612 无向图中任意添加一条边后使桥的数量最少 / 无向图缩点+求树的直径

题意如上,含有重边(重边的话,俩个点就可以构成了边双连通). 先缩点成树,在求数的直径,最远的连起来,剩下边(桥)的自然最少.这里学习了树的直径求法:第一次选任意起点U,进行bfs,到达最远的一个点v(level最深)该点必然是树的直径的一个端点,,再从该点出发,bfs,到最深的一点,该点深度就是直径.(证明:先假设u,是直径上一点,S,T是直径的端点,设v!=t,则有(V,U)+(U,S)>(T,U)+(U,S),矛盾,故t=v:若u不是直径上一点,设u到直径上的一点为x,同理易证. 最后 缩