LruCache 缓存

内存缓存(LruCache):
系统提供的LruCache类是非常适合用作缓存Bitmap任务的,
它将最近被引用到的对象存储在一个强引用的LinkedHashMap中,并且在缓存超过了指定大小之后将最近不常使用的对象释放掉。
注意:以前有一个非常流行的内存缓存实现是SoftReference(软引用)或者WeakReference(弱引用)的Bitmap缓存方案,
然而现在已经不推荐使用了。自Android2.3版本(API Level 9)开始,垃圾回收器更着重于对软/弱引用的回收,这使得上述的方案相当无效。
http://developer.android.com/reference/android/util/LruCache.html

/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package android.util;

import java.util.LinkedHashMap;
import java.util.Map;

/**
 * Cache保存一个强引用来限制内容数量,每当Item被访问的时候,此Item就会移动到队列的头部。
 * 当cache已满的时候加入新的item时,在队列尾部的item会被回收。
 * 如果你cache的某个值需要明确释放,重写entryRemoved()
 * 如果key相对应的item丢掉啦,重写create().这简化了调用代码,即使丢失了也总会返回
 * 默认cache大小是测量的item的数量,重写sizeof计算不同item的
 *  大小。
 *   int cacheSize = 4 * 1024 * 1024; // 4MiB
 *   LruCache<String, Bitmap> bitmapCache = new LruCache<String, Bitmap>(cacheSize) {
 *       protected int sizeOf(String key, Bitmap value) {
 *           return value.getByteCount();
 *       }
 *   }}
 *   不允许key或者value为null
 *   当get(),put(),remove()返回值为null时,key相应的项不在cache中
 */
public class LruCache<K, V> {
    private final LinkedHashMap<K, V> map;

    /** Size of this cache in units. Not necessarily the number of elements. */
    private int size; //已经存储的大小
    private int maxSize; //规定的最大存储空间

    private int putCount; //put的次数
    private int createCount;//create的次数
    private int evictionCount;//回收的次数
    private int hitCount;//命中的次数
    private int missCount;//丢失的次数

    /**
     * @param maxSize for caches that do not override {@link #sizeOf}, this is
     *     the maximum number of entries in the cache. For all other caches,
     *     this is the maximum sum of the sizes of the entries in this cache.
     */
    public LruCache(int maxSize) {
        if (maxSize <= 0) {
            throw new IllegalArgumentException("maxSize <= 0");
        }
        this.maxSize = maxSize;
        this.map = new LinkedHashMap<K, V>(0, 0.75f, true); // LinkedHashMap的初始化放在构造器中,
                                                            //这里将LinkedHashMap的accessOrder设置为true,为插入顺序,默认是访问顺序
    }

    /**
     * Sets the size of the cache.
     * @param maxSize The new maximum size.
     *
     * @hide
     */
    public void resize(int maxSize) {
        if (maxSize <= 0) {
            throw new IllegalArgumentException("maxSize <= 0");
        }

        synchronized (this) {
            this.maxSize = maxSize;
        }
        trimToSize(maxSize);
    }

    /**
     * Returns the value for {@code key} if it exists in the cache or can be
     * created by {@code #create}. If a value was returned, it is moved to the
     * head of the queue. This returns null if a value is not cached and cannot
     * be created.
     * 通过key返回相应的item,或者创建返回相应的item。相应的item会移动到队列的头部,
     * 如果item的value没有被cache或者不能被创建,则返回null。
     */
    public final V get(K key) {
        if (key == null) { //不允许空键
            throw new NullPointerException("key == null");
        }

        V mapValue;
        synchronized (this) {
            mapValue = map.get(key);//调用LinkedHashMap的get方法
            if (mapValue != null) {
                hitCount++;
                return mapValue;
            }
            missCount++;
        }

        /*
           * Attempt to create a value. This may take a long time, and the map
         * may be different when create() returns. If a conflicting value was
         * added to the map while create() was working, we leave that value in
         * the map and release the created value.
         * 如果丢失了就试图创建一个item
         */

        V createdValue = create(key);
        if (createdValue == null) {
            return null;
        }

        synchronized (this) {
            createCount++; //如果创建成功,那么create次数加1
            mapValue = map.put(key, createdValue);

            if (mapValue != null) {
                // There was a conflict so undo that last put
                map.put(key, mapValue);
            } else {
                size += safeSizeOf(key, createdValue);
            }
        }

        if (mapValue != null) {
            entryRemoved(false, key, createdValue, mapValue);
            return mapValue;
        } else {
            trimToSize(maxSize);
            return createdValue;
        }
    }

    /**
     * Caches {@code value} for {@code key}. The value is moved to the head of
     * the queue.
     *
     * @return the previous value mapped by {@code key}.
     */
    public final V put(K key, V value) {
        if (key == null || value == null) { //键值不允许为空
            throw new NullPointerException("key == null || value == null");
        }

        V previous;
        synchronized (this) {
            putCount++;
            size += safeSizeOf(key, value);//统计放入的值的大小,然后增加size的记录值
            previous = map.put(key, value);//把新值放入缓存map中,然后获得旧值
            if (previous != null) { //旧值不为空,由于替换了旧值,所以需要把缓存数据总大小减去这个旧值的大小
                size -= safeSizeOf(key, previous);
            }
        }
        //还要调用entryRemoved()方法来让子类去处理不用的旧值previous,可能按照自己的方式去释放它。
        //当然了,子类也可以不实现这个方法。
        if (previous != null) {
            entryRemoved(false, key, previous, value);
        }

        trimToSize(maxSize);
        return previous;
    }

    /**
     * Remove the eldest entries until the total of remaining entries is at or
     * below the requested size.
     *
     * @param maxSize the maximum size of the cache before returning. May be -1
     *            to evict even 0-sized elements.
     把最少访问的老数据删除,直到总数据大小在上限的范围之内.
     数据上限. 值可能是-1,这样就会删除所有的缓存数据.
     */
    public void trimToSize(int maxSize) {
        while (true) { //不断删除linkedHashMap头部entry,也就是最近最少访问的条目,直到size小于最大容量
            K key;
            V value;
            synchronized (this) {
                if (size < 0 || (map.isEmpty() && size != 0)) {
                    throw new IllegalStateException(getClass().getName()
                            + ".sizeOf() is reporting inconsistent results!");
                }

                if (size <= maxSize) { //直到容量小于最大容量为止
                    break;
                }

                Map.Entry<K, V> toEvict = map.eldest(); //获取最少访问的entry
                if (toEvict == null) {
                    break;
                }

                key = toEvict.getKey();
                value = toEvict.getValue();
                map.remove(key);//删除最少访问的entry
                size -= safeSizeOf(key, value);
                evictionCount++;
            }

            entryRemoved(true, key, value, null);
        }
    }

    /**
     * Removes the entry for {@code key} if it exists.
     *
     * @return the previous value mapped by {@code key}.
     */
    public final V remove(K key) {
        if (key == null) {
            throw new NullPointerException("key == null");
        }

        V previous;
        synchronized (this) {
            previous = map.remove(key);//调用LinkedHashMap的remove方法
            if (previous != null) {
                size -= safeSizeOf(key, previous);
            }
        }

        if (previous != null) {
            entryRemoved(false, key, previous, null);
        }

        return previous;
    }

    /**
     * Called for entries that have been evicted or removed. This method is
     * invoked when a value is evicted to make space, removed by a call to
     * {@link #remove}, or replaced by a call to {@link #put}. The default
     * implementation does nothing.
     *
     * <p>The method is called without synchronization: other threads may
     * access the cache while this method is executing.
     *
     * @param evicted true if the entry is being removed to make space, false
     *     if the removal was caused by a {@link #put} or {@link #remove}.
     * @param newValue the new value for {@code key}, if it exists. If non-null,
     *     this removal was caused by a {@link #put}. Otherwise it was caused by
     *     an eviction or a {@link #remove}.
     */
    protected void entryRemoved(boolean evicted, K key, V oldValue, V newValue) {}

    /**
     * Called after a cache miss to compute a value for the corresponding key.
     * Returns the computed value or null if no value can be computed. The
     * default implementation returns null.
     *
     * <p>The method is called without synchronization: other threads may
     * access the cache while this method is executing.
     *
     * <p>If a value for {@code key} exists in the cache when this method
     * returns, the created value will be released with {@link #entryRemoved}
     * and discarded. This can occur when multiple threads request the same key
     * at the same time (causing multiple values to be created), or when one
     * thread calls {@link #put} while another is creating a value for the same
     * key.
     */
    protected V create(K key) {
        return null;
    }

    private int safeSizeOf(K key, V value) {
        int result = sizeOf(key, value);
        if (result < 0) {
            throw new IllegalStateException("Negative size: " + key + "=" + value);
        }
        return result;
    }

    /**
     * Returns the size of the entry for {@code key} and {@code value} in
     * user-defined units.  The default implementation returns 1 so that size
     * is the number of entries and max size is the maximum number of entries.
     *
     * <p>An entry‘s size must not change while it is in the cache.
     * 这个方法用于计算每个条目的大小,子类必须得复写这个类。
     */
    protected int sizeOf(K key, V value) {
        return 1;
    }

    /**
     * Clear the cache, calling {@link #entryRemoved} on each removed entry.
     */
    public final void evictAll() {
        trimToSize(-1); // -1 will evict 0-sized elements
    }

    /**
     * For caches that do not override {@link #sizeOf}, this returns the number
     * of entries in the cache. For all other caches, this returns the sum of
     * the sizes of the entries in this cache.
     */
    public synchronized final int size() {
        return size;
    }

    /**
     * For caches that do not override {@link #sizeOf}, this returns the maximum
     * number of entries in the cache. For all other caches, this returns the
     * maximum sum of the sizes of the entries in this cache.
     */
    public synchronized final int maxSize() {
        return maxSize;
    }

    /**
     * Returns the number of times {@link #get} returned a value that was
     * already present in the cache.
     */
    public synchronized final int hitCount() {
        return hitCount;
    }

    /**
     * Returns the number of times {@link #get} returned null or required a new
     * value to be created.
     */
    public synchronized final int missCount() {
        return missCount;
    }

    /**
     * Returns the number of times {@link #create(Object)} returned a value.
     */
    public synchronized final int createCount() {
        return createCount;
    }

    /**
     * Returns the number of times {@link #put} was called.
     */
    public synchronized final int putCount() {
        return putCount;
    }

    /**
     * Returns the number of values that have been evicted.
     */
    public synchronized final int evictionCount() {
        return evictionCount;
    }

    /**
     * Returns a copy of the current contents of the cache, ordered from least
     * recently accessed to most recently accessed.
     */
    public synchronized final Map<K, V> snapshot() {
        return new LinkedHashMap<K, V>(map);
    }

    @Override public synchronized final String toString() {
        int accesses = hitCount + missCount;
        int hitPercent = accesses != 0 ? (100 * hitCount / accesses) : 0;
        return String.format("LruCache[maxSize=%d,hits=%d,misses=%d,hitRate=%d%%]",
                maxSize, hitCount, missCount, hitPercent);
    }
}

总结:
1.LruCache封装了LinkedHashMap,提供了LRU缓存的功能;
2.LruCache通过trimToSize方法自动删除最近最少访问的键值对;
3.LruCache不允许空键值;
4.LruCache线程安全;
5.继承LruCache时,必须要复写sizeof方法,用于计算每个条目的大小。

时间: 2024-10-08 23:39:23

LruCache 缓存的相关文章

android 使用LruCache缓存网络图片

加载图片,图片如果达到一定的上限,如果没有一种合理的机制对图片进行释放必然会引起程序的崩溃. 为了避免这种情况,我们可以使用Android中LruCache来缓存下载的图片,防止程序出现OOM. 打开activity_main.xml作为程序的主布局,加入如下代码: <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:tools="http://schemas.an

AsyncTask异步任务与LruCache缓存策略实现图片加载(一)

AsyncTask异步任务与LruCache缓存策略实现图片加载 AsyncTask异步任务 以下内容节选自官方文档: AsyncTask enables proper and easy use of the UI thread. This class allows to perform background operations and publish results on the UI thread without having to manipulate threads and/or ha

让App中加入LruCache缓存,轻松解决图片过多造成的OOM

上次有过电话面试中问到Android中的缓存策略,当时模糊不清的回答,现在好好理一下吧. Android中一般情况下采取的缓存策略是使用二级缓存,即内存缓存+硬盘缓存->LruCache+DiskLruCache,二级缓存可以满足大部分的需求了,另外还有个三级缓存(内存缓存+硬盘缓存+网络缓存),其中DiskLruCache就是硬盘缓存,下篇再讲吧! 1.那么LruCache到底是什么呢? 查了下官方资料,是这样定义的: LruCache 是对限定数量的缓存对象持有强引用的缓存,每一次缓存对象被

使用Android新式LruCache缓存图片,基于线程池异步加载图片

import java.io.BufferedInputStream; import java.io.ByteArrayOutputStream; import java.io.InputStream; import java.net.HttpURLConnection; import java.net.URL; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import a

让App中增加LruCache缓存,轻松解决图片过多造成的OOM

上次有过电话面试中问到Android中的缓存策略,当时模糊不清的回答,如今好好理一下吧. Android中普通情况下採取的缓存策略是使用二级缓存.即内存缓存+硬盘缓存->LruCache+DiskLruCache.二级缓存能够满足大部分的需求了,另外还有个三级缓存(内存缓存+硬盘缓存+网络缓存),当中DiskLruCache就是硬盘缓存,下篇再讲吧! 1.那么LruCache究竟是什么呢? 查了下官方资料.是这样定义的: LruCache 是对限定数量的缓存对象持有强引用的缓存,每一次缓存对象被

基于LinedHashMap 实现LRUCache 缓存

原文链接 基于LinedHashMap 实现LRUCache 缓存 基于LinkedHashMap实现LRUCache public class LRUCache2<K, V> extends LinkedHashMap { private int size; private HashMap<K, V> map; public LRUCache2(int size) { this.size = size; this.map = new LinkedHashMap<K, V&g

LruCache缓存bitmap(二)

Lrucache缓存程序关闭缓存自动清除,所以要在onstart方法中调用,只要不关闭程序缓存就在,除以1024是以kb为单位 public class MainActivity extends AppCompatActivity { private LruCache<String, Bitmap> mMemoryCache; ImageView imageView; Bitmap bitmap; int cacheSize; @Override protected void onCreate

LruCache缓存

LruCache通常用于实现内存缓存,采用的缓存算法是LRU(Least Recently Used)即近期最少使用算法,其核心思想是:当缓存满的时候,会优先淘汰那些近期最少使用的缓存对象. 1.LruCache是Android 3.1提供的缓存类,在使用LruCache的时候建议采用support-v4兼容包中提供的LruCache,这样才能兼容Android 2.2版本. 2.LruCache是一个泛型类,内部采用一个LinkedHashMap以强引用的方式存储外界的缓存对象,当缓存满的时候

android:LruCache缓存小结

原理: LruCache以键值对的形式,初始化时,需要设置缓存的大小K,超过这个大小的数据将会被清除.注意:清除的数据,是那些被先加入的数据.LruCache内部的数据结构是LinkedHashMap存储的.这样,LruCache就达到了缓存最近put的K个数据. 使用:[code] int cacheSize = 4 * 1024 * 1024; // 4MiB LruCache bitmapCache = new LruCache(cacheSize) { protected int siz

Android使用LruCache缓存

今天我们来一起学习一下缓存技术,相信大家做开发的时候都知道请求网络数据的重要,但是有一些只用请求一次就过时性的消息比如某些新闻信息,如果我们每次进入新闻界面就从新从网络上获取势必会给用户带来不好的体验,所以我们需要缓存技术来帮我们解决这一问题. 1,LruCache介绍 核心的类是LruCache (此类在android-support-v4的包中提供) .这个类非常适合用来缓存图片,它的主要算法原理是把最近使用的对象用强引用存储在 LinkedHashMap 中,并且把最近最少使用的对象在缓存