从源码理解ArrayList.java

package java.util;

import java.util.function.Consumer;
import java.util.function.Predicate;
import java.util.function.UnaryOperator;

/**
 * 可变数组实现了List接口,实现了所有列表操作,允许空值null。还提供了操作数组大小的方法用以内部使用。
 * 除了不支持并发访问,这个类完全等同于Vector
 * 以下几个操作都是常数时间:size、isEmpty、get、set、iterator和listIterator
 * add操作均摊时间为常数时间
 * 其他操作是线性时间,常数因子比LinkedList实现小。
 * 每个ArrayList实例都有一个capacity。capacity是list中用于保存元素的数组大小。大于等于list的Size。
 * 添加元素后,capacity自增。
 *
 * 应用可以在添加大量元素之前,通过ensureCapacity操作提升容量,这样可以减少因为容量增长造成的内存重新分配。
 * 该实现不支持并发。多线程下需要外部同步:List list = Collections.synchronizedList(new ArrayList(...));
 *
 * 迭代器iterator和listIterator都是快速失败(fail-fast)的
 * 并发访问下行为未定。
 */
	/**
	 * 支持泛型,继承自AbstractList,实现了List、RandomAccess、Cloneable、java.io.Serializable接口
	 * AbstractList提供了List接口的默认实现(个别方法为抽象方法)
	 * List接口定义了列表必须实现的方法
	 * RandomAccess是一个标记接口,接口内没有定义任何内容
	 * 实现了Cloneable接口的类,可以调用Object.clone()方法返回该对象的浅拷贝
	 * 通过实现java.io.Serializable接口以启用其序列化功能。未实现此接口的类将无法使其任何状态序列化或 反序列化。
	 * 序列化接口没有方法或字段,仅用于标识可序列化的语义。
	 */
public class ArrayList<E> extends AbstractList<E>
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
    private static final long serialVersionUID = 8683452581122892189L;

    /**
     * 默认初始容量.
     */
    private static final int DEFAULT_CAPACITY = 10;

    /**
     * 所有空实例共享的空数组实例.
     */
    private static final Object[] EMPTY_ELEMENTDATA = {};

    /**
     * 存储ArrayList元素的数组,为空时指向EMPTY_ELEMENTDATA
     */
    transient Object[] elementData; // non-private to simplify nested class access

    /**
     * ArrayList的大小
     */
    private int size;

    /**
     * 构造一个具有指定初始容量的空list
     * @param  initialCapacity  the initial capacity of the list
     * @throws IllegalArgumentException if the specified initial capacity
     *         is negative
     */
    public ArrayList(int initialCapacity) {
        super();
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        this.elementData = new Object[initialCapacity];
    }

    /**
     * 构造一个具有初始容量10的空list
     */
    public ArrayList() {
        super();
        this.elementData = EMPTY_ELEMENTDATA;
    }

    /**
     * 构造一个包含指定集合中元素的list,按照迭代器返回的顺序
     * @param c the collection whose elements are to be placed into this list
     * @throws NullPointerException if the specified collection is null
     */
    public ArrayList(Collection<? extends E> c) {
        elementData = c.toArray();
        size = elementData.length;
        // c.toArray might (incorrectly) not return Object[] (see 6260652)
        //返回若不是Object[]将调用Arrays.copyOf方法将其转为Object[]
        if (elementData.getClass() != Object[].class)
            elementData = Arrays.copyOf(elementData, size, Object[].class);
    }

    /**
     * 将ArrayList实例的容量裁剪到list当前大小Size。
     * 应用程序使用该操作降低ArrayList实例占用的存储
     * 因为清空等一些操作只改变参数而没有释放空间
     */
    public void trimToSize() {
        modCount++;
        if (size < elementData.length) {
            elementData = Arrays.copyOf(elementData, size);
        }
    }

    /**
     * 提升ArrayList实例的容量,确保它可以保存至少minCapacity的元素
     * @param   minCapacity   the desired minimum capacity
     */
    public void ensureCapacity(int minCapacity) {
    		//如果数组当前为空,添加元素时最小增长容量为DEFAULT_CAPACITY
    		//否则,增长容量大于0即可
        int minExpand = (elementData != EMPTY_ELEMENTDATA)
            // any size if real element table
            ? 0
            // larger than default for empty table. It's already supposed to be
            // at default size.
            : DEFAULT_CAPACITY;

        if (minCapacity > minExpand) {
            ensureExplicitCapacity(minCapacity);
        }
    }

    private void ensureCapacityInternal(int minCapacity) {
        if (elementData == EMPTY_ELEMENTDATA) {
            minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
        }

        ensureExplicitCapacity(minCapacity);
    }

    private void ensureExplicitCapacity(int minCapacity) {
        modCount++;				//list结构被改变的次数

        // overflow-conscious code
        //目标容量大于当前容量才增长
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    }

    /**
     * 数组可分配最大容量,有些虚拟机中会给数组保存头部,尝试分配更大的数组会导致内存溢出
     */
    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

    /**
     * 提升容量,保证它可以存储指定参数个元素
     * @param minCapacity the desired minimum capacity
     */
    private void grow(int minCapacity) {
        // overflow-conscious code
        int oldCapacity = elementData.length;
        int newCapacity = oldCapacity + (oldCapacity >> 1);
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        // minCapacity is usually close to size, so this is a win:
        //返回一个内容为原数组元素,大小为新容量的数组赋给elementData
        elementData = Arrays.copyOf(elementData, newCapacity);
    }
    /**
     * 容量过大,栈溢出
     */
    private static int hugeCapacity(int minCapacity) {
        if (minCapacity < 0) // overflow
            throw new OutOfMemoryError();
        return (minCapacity > MAX_ARRAY_SIZE) ?
            Integer.MAX_VALUE :
            MAX_ARRAY_SIZE;
    }

    /**
     * Returns the number of elements in this list.
     *
     * @return the number of elements in this list
     */
    public int size() {
        return size;
    }

    /**
     * Returns <tt>true</tt> if this list contains no elements.
     *
     * @return <tt>true</tt> if this list contains no elements
     */
    public boolean isEmpty() {
    		//直接返回size是否等于0
        return size == 0;
    }

    /**
     * 若列表中包含该元素就返回true,更严格的说,是当且仅当列表只含有一个当前元素时返回true
     * @param o element whose presence in this list is to be tested
     * @return <tt>true</tt> if this list contains the specified element
     */
    public boolean contains(Object o) {
    		//indexOf方法返回值与0比较来判断对象是否在list中
        return indexOf(o) >= 0;
    }

    /**
     * 通过遍历elementData数组来判断对象是否在list中,若存在,返回首次出现的index(【0,size-1】)
     * 若不存在,返回-1
     * 所以contains方法可以通过indexOf(Object)方法的返回值来判断对象是否被包含在list中
     */
    public int indexOf(Object o) {
        if (o == null) {
            for (int i = 0; i < size; i++)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = 0; i < size; i++)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }

    /**
     * 返回的是传入对象在elementData数组中最后出现的index值,没有则是-1
     */
    public int lastIndexOf(Object o) {
        if (o == null) {
        		//从后向前遍历数组,若遇到object则返回index值,若没有遇到,返回-1
            for (int i = size-1; i >= 0; i--)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = size-1; i >= 0; i--)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }

    /**
     * 返回ArrayList实例的浅表副本(不复制这些元素本身)
     * @return a clone of this <tt>ArrayList</tt> instance
     */
    public Object clone() {
        try {
        		//调用父类的clone方法返回一个对象的副本
            ArrayList<?> v = (ArrayList<?>) super.clone();
            	//将返回对象的elementData数组的内容赋值为原对象elementData数组的内容
            v.elementData = Arrays.copyOf(elementData, size);
            	//将副本的modCount设置为0
            v.modCount = 0;
            return v;
        } catch (CloneNotSupportedException e) {
            // this shouldn't happen, since we are Cloneable
            throw new InternalError(e);
        }
    }

    /**
     * 返回一个包含列表中所有元素的数组
     * 返回的数组是一个安全的数组,即没有列表中的引用,是一个全新申请的数组
     * @return an array containing all of the elements in this list in
     *         proper sequence
     */
    public Object[] toArray() {
     		//拷贝elementData从0到size-1位置的元素到新数组并返回
        return Arrays.copyOf(elementData, size);
    }

    /**
     * 返回一个包含列表所有元素的数组,若指定数组和列表大小合适,就在数组中返回元素,否则,重新申请数组空间
     * 若指定数组空间有多余,则把紧跟在元素后面的位置设为null
     * @param a the array into which the elements of the list are to
     *          be stored, if it is big enough; otherwise, a new array of the
     *          same runtime type is allocated for this purpose.
     * @return an array containing the elements of the list
     * @throws ArrayStoreException if the runtime type of the specified array
     *         is not a supertype of the runtime type of every element in
     *         this list
     * @throws NullPointerException if the specified array is null
     */
    @SuppressWarnings("unchecked")
    public <T> T[] toArray(T[] a) {
    		//如果传入数组的长度小于size,返回一个新的数组,大小为size,类型与传入数组相同
        if (a.length < size)
            // Make a new array of a's runtime type, but my contents:
            return (T[]) Arrays.copyOf(elementData, size, a.getClass());
        	//否则,将elementData复制到传入数组并返回传入的数组
        System.arraycopy(elementData, 0, a, 0, size);
        	//若传入数组长度大于size,把返回数组的第size个元素置为空
        if (a.length > size)
            a[size] = null;
        return a;
    }

    // Positional Access Operations

    @SuppressWarnings("unchecked")
    E elementData(int index) {
        return (E) elementData[index];
    }

    /**
     * 返回指定位置的元素,即elementData[index]
     * @param  index index of the element to return
     * @return the element at the specified position in this list
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public E get(int index) {
    		//范围检查
        rangeCheck(index);
        return elementData(index);
    }

    /**
     * 将列表中指定位置的元素替换为指定元素
     * @param index index of the element to replace
     * @param element element to be stored at the specified position
     * @return the element previously at the specified position
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public E set(int index, E element) {
    		//范围检查
        rangeCheck(index);

        E oldValue = elementData(index);
        	//用新元素替换旧元素
        elementData[index] = element;
        	//返回旧元素
        return oldValue;
    }

    /**
     * 在列表尾部添加一个元素,容量的扩展将导致数组元素的复制,多次扩展将执行多次整个数组内容的复制。
     * 若能提前大致判断list的长度,调用ensureCapacity调整容量,将有效的提高运行速度
     */
    public boolean add(E e) {
    		//确保不会产生越界
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        elementData[size++] = e;
        return true;
    }

    /**
     * 在指定位置插入元素,当前位置原元素及所有后继元素向右移动一个位置
     * @param index index at which the specified element is to be inserted
     * @param element element to be inserted
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public void add(int index, E element) {
    		//判断指定位置Index是否超出elementData的界限
        rangeCheckForAdd(index);
        	//调用ensureCapacityInternal调整容量(若容量足够则不会扩展)
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        	//调用System.arrayCopy将elementData从Index开始的size-index个元素复制到index+1至size+1的位置
        	//即index开始的元素都向后移动一个位置,然后将Index位置的值指向element
        System.arraycopy(elementData, index, elementData, index + 1,
                         size - index);
        elementData[index] = element;
        size++;
    }

    /**
     * 删除指定位置的元素,将后继元素向前移动一个位置
     * @param index the index of the element to be removed
     * @return the element that was removed from the list
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public E remove(int index) {
    		//检查范围
        rangeCheck(index);
        	//修改modCount
        modCount++;
        	//保留将要被移除的元素
        E oldValue = elementData(index);

        int numMoved = size - index - 1;
        if (numMoved > 0)
        		//将移除位置之后的元素向前挪动一个位置
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        	//将list末尾元素置空(null)
        elementData[--size] = null; // clear to let GC do its work
        	//返回被移除的元素
        return oldValue;
    }

    /**
     * 删除首次出现在列表中的元素,如果不包含该元素,不作变化
     * @param o element to be removed from this list, if present
     * @return <tt>true</tt> if this list contained the specified element
     */
    public boolean remove(Object o) {
        if (o == null) {
        		//从前向后遍历所有元素
            for (int index = 0; index < size; index++)
                if (elementData[index] == null) {
                		//与remove(index)的不同之处在于跳过边界处理,也不返回被移除的元素
                    fastRemove(index);
                    return true;
                }
        } else {
            for (int index = 0; index < size; index++)
                if (o.equals(elementData[index])) {
                    fastRemove(index);
                    return true;
                }
        }
        return false;
    }

    /*
     * 跳过边界检查也不返回删除值的删除函数
     */
    private void fastRemove(int index) {
        modCount++;
        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--size] = null; // clear to let GC do its work
    }

    /**
     * 清空列表中的所有元素,操作后列表为空
     * clear的时候并没有修改elementData的长度,这使得确定不再修改list内容之后最好调用trimToSize来释放掉一些空间
     */
    public void clear() {
        modCount++;

        // clear to let GC do its work
        	//等待垃圾回收器回收
        for (int i = 0; i < size; i++)
            elementData[i] = null;

        size = 0;
    }

    /**
     * 将指定集合中的所有元素都添加到列表末尾,以其迭代器返回的顺序添加
     * 该操作在多线程情况下行为未定义,需要外部同步
     * @param c collection containing elements to be added to this list
     * @return <tt>true</tt> if this list changed as a result of the call
     * @throws NullPointerException if the specified collection is null
     */
    public boolean addAll(Collection<? extends E> c) {
    		//先将集合c转换成数组,
        Object[] a = c.toArray();
        	//根据转换后数组的长度和ArrayList的size扩展容量
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount
        	//调用System.arrayCopy方法复制元素到elementData的尾部
        System.arraycopy(a, 0, elementData, size, numNew);
        	//调整size
        size += numNew;
        	//只要集合c的大小不为空,即转换后的数组长度不为0则返回true
        return numNew != 0;
    }

    /**
     * 将指定集合c中所有元素添加到以index开头的位置中,将当前元素及所有后继元素向右移动,新元素的顺序以迭代器返回顺序
     * @param index index at which to insert the first element from the
     *              specified collection
     * @param c collection containing elements to be added to this list
     * @return <tt>true</tt> if this list changed as a result of the call
     * @throws IndexOutOfBoundsException {@inheritDoc}
     * @throws NullPointerException if the specified collection is null
     */
    public boolean addAll(int index, Collection<? extends E> c) {
    		//先判断Index是否越界
        rangeCheckForAdd(index);
        	//与addAll(c)一致
        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount

        int numMoved = size - index;
        if (numMoved > 0)
        			//先将index开始的元素向后移动numNew(c转换为数组后的长度)个位置(也是一个复制的过程)
            System.arraycopy(elementData, index, elementData, index + numNew,
                             numMoved);
        			//将数组内容复制到elementData的index位置到index+X
        System.arraycopy(a, 0, elementData, index, numNew);
        			//增加size
        size += numNew;
        			//集合大小不为空就返回true
        return numNew != 0;
    }

    /**
     * 删除列表中从fromIndex到toIndex的元素,包含fromIndex,不含toIndex,所有后继元素向前移动
     * 如果fromIndex=toIndex,没有修改
     * @throws IndexOutOfBoundsException if {@code fromIndex} or
     *         {@code toIndex} is out of range
     *         ({@code fromIndex < 0 ||
     *          fromIndex >= size() ||
     *          toIndex > size() ||
     *          toIndex < fromIndex})
     */
    protected void removeRange(int fromIndex, int toIndex) {
        modCount++;
        int numMoved = size - toIndex;
        	//将elementData从toIndex位置开始的元素向前移动到fromIndex
        System.arraycopy(elementData, toIndex, elementData, fromIndex,
                         numMoved);

        // clear to let GC do its work
        int newSize = size - (toIndex-fromIndex);
        	//将toIndex位置之后的元素全部置空顺便修改size
        for (int i = newSize; i < size; i++) {
            elementData[i] = null;
        }
        	//修改size
        size = newSize;
    }

    /**
     * 检查给定下标是否在范围内,该方法不检查下标为负数的情况
     */
    private void rangeCheck(int index) {
        if (index >= size)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    /**
     * A version of rangeCheck used by add and addAll.
     */
    private void rangeCheckForAdd(int index) {
        if (index > size || index < 0)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    /**
     * Constructs an IndexOutOfBoundsException detail message.
     * Of the many possible refactorings of the error handling code,
     * this "outlining" performs best with both server and client VMs.
     */
    private String outOfBoundsMsg(int index) {
        return "Index: "+index+", Size: "+size;
    }

    /**
     * 删除列表中所有出现在集合c中的元素
     * @param c collection containing elements to be removed from this list
     * @return {@code true} if this list changed as a result of the call
     * @throws ClassCastException if the class of an element of this list
     *         is incompatible with the specified collection
     * (<a href="Collection.html#optional-restrictions">optional</a>)
     * @throws NullPointerException if this list contains a null element and the
     *         specified collection does not permit null elements
     * (<a href="Collection.html#optional-restrictions">optional</a>),
     *         or if the specified collection is null
     * @see Collection#contains(Object)
     */
    public boolean removeAll(Collection<?> c) {
        Objects.requireNonNull(c);
        return batchRemove(c, false);
    }

    /**
     * 只保留列表中出现在集合c中的元素
     * @param c collection containing elements to be retained in this list
     * @return {@code true} if this list changed as a result of the call
     * @throws ClassCastException if the class of an element of this list
     *         is incompatible with the specified collection
     * (<a href="Collection.html#optional-restrictions">optional</a>)
     * @throws NullPointerException if this list contains a null element and the
     *         specified collection does not permit null elements
     * (<a href="Collection.html#optional-restrictions">optional</a>),
     *         or if the specified collection is null
     * @see Collection#contains(Object)
     */
    public boolean retainAll(Collection<?> c) {
        Objects.requireNonNull(c);
        return batchRemove(c, true);
    }
    	/**
    	 * 批量删除
    	 * complement为false,则为删除列表中出现在集合c中的元素
    	 * complement为true,则为删除列表中未出现在集合c中的元素
    	 */
    private boolean batchRemove(Collection<?> c, boolean complement) {
        final Object[] elementData = this.elementData;
        int r = 0, w = 0;
        boolean modified = false;
        try {
            for (; r < size; r++)
                if (c.contains(elementData[r]) == complement)
                    elementData[w++] = elementData[r];
        } finally {
            // Preserve behavioral compatibility with AbstractCollection,
            // even if c.contains() throws.
        	//循环被中断,将r之后的元素拷贝到w之后
            if (r != size) {
                System.arraycopy(elementData, r,
                                 elementData, w,
                                 size - r);
                	//修改新数组长度
                w += size - r;
            }
            	//有元素删除了
            if (w != size) {
                // clear to let GC do its work
            		//删除元素
                for (int i = w; i < size; i++)
                    elementData[i] = null;
                modCount += size - w;
                size = w;
                modified = true;
            }
        }
        return modified;
    }

    /**
     * Save the state of the <tt>ArrayList</tt> instance to a stream (that
     * is, serialize it).
     *
     * @serialData The length of the array backing the <tt>ArrayList</tt>
     *             instance is emitted (int), followed by all of its elements
     *             (each an <tt>Object</tt>) in the proper order.
     */
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException{
        // Write out element count, and any hidden stuff
        int expectedModCount = modCount;
        s.defaultWriteObject();

        // Write out size as capacity for behavioural compatibility with clone()
        s.writeInt(size);

        // Write out all elements in the proper order.
        for (int i=0; i<size; i++) {
            s.writeObject(elementData[i]);
        }

        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
    }

    /**
     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
     * deserialize it).
     */
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        elementData = EMPTY_ELEMENTDATA;

        // Read in size, and any hidden stuff
        s.defaultReadObject();

        // Read in capacity
        s.readInt(); // ignored

        if (size > 0) {
            // be like clone(), allocate array based upon size not capacity
            ensureCapacityInternal(size);

            Object[] a = elementData;
            // Read in all elements in the proper order.
            for (int i=0; i<size; i++) {
                a[i] = s.readObject();
            }
        }
    }

    /**
     * Returns a list iterator over the elements in this list (in proper
     * sequence), starting at the specified position in the list.
     * The specified index indicates the first element that would be
     * returned by an initial call to {@link ListIterator#next next}.
     * An initial call to {@link ListIterator#previous previous} would
     * return the element with the specified index minus one.
     *
     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
     *
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public ListIterator<E> listIterator(int index) {
        if (index < 0 || index > size)
            throw new IndexOutOfBoundsException("Index: "+index);
        return new ListItr(index);
    }

    /**
     * Returns a list iterator over the elements in this list (in proper
     * sequence).
     *
     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
     *
     * @see #listIterator(int)
     */
    public ListIterator<E> listIterator() {
        return new ListItr(0);
    }

    /**
     * Returns an iterator over the elements in this list in proper sequence.
     *
     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
     *
     * @return an iterator over the elements in this list in proper sequence
     */
    public Iterator<E> iterator() {
        return new Itr();
    }

    /**
     * An optimized version of AbstractList.Itr
     */
    private class Itr implements Iterator<E> {
        int cursor;       // index of next element to return
        int lastRet = -1; // index of last element returned; -1 if no such
        int expectedModCount = modCount;

        public boolean hasNext() {
            return cursor != size;
        }

        @SuppressWarnings("unchecked")
        public E next() {
            checkForComodification();
            int i = cursor;
            if (i >= size)
                throw new NoSuchElementException();
            Object[] elementData = ArrayList.this.elementData;
            if (i >= elementData.length)
                throw new ConcurrentModificationException();
            cursor = i + 1;
            return (E) elementData[lastRet = i];
        }

        public void remove() {
            if (lastRet < 0)
                throw new IllegalStateException();
            checkForComodification();

            try {
                ArrayList.this.remove(lastRet);
                cursor = lastRet;
                lastRet = -1;
                expectedModCount = modCount;
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }

        @Override
        @SuppressWarnings("unchecked")
        public void forEachRemaining(Consumer<? super E> consumer) {
            Objects.requireNonNull(consumer);
            final int size = ArrayList.this.size;
            int i = cursor;
            if (i >= size) {
                return;
            }
            final Object[] elementData = ArrayList.this.elementData;
            if (i >= elementData.length) {
                throw new ConcurrentModificationException();
            }
            while (i != size && modCount == expectedModCount) {
                consumer.accept((E) elementData[i++]);
            }
            // update once at end of iteration to reduce heap write traffic
            cursor = i;
            lastRet = i - 1;
            checkForComodification();
        }

        final void checkForComodification() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }
    }

    /**
     * An optimized version of AbstractList.ListItr
     */
    private class ListItr extends Itr implements ListIterator<E> {
        ListItr(int index) {
            super();
            cursor = index;
        }

        public boolean hasPrevious() {
            return cursor != 0;
        }

        public int nextIndex() {
            return cursor;
        }

        public int previousIndex() {
            return cursor - 1;
        }

        @SuppressWarnings("unchecked")
        public E previous() {
            checkForComodification();
            int i = cursor - 1;
            if (i < 0)
                throw new NoSuchElementException();
            Object[] elementData = ArrayList.this.elementData;
            if (i >= elementData.length)
                throw new ConcurrentModificationException();
            cursor = i;
            return (E) elementData[lastRet = i];
        }

        public void set(E e) {
            if (lastRet < 0)
                throw new IllegalStateException();
            checkForComodification();

            try {
                ArrayList.this.set(lastRet, e);
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }

        public void add(E e) {
            checkForComodification();

            try {
                int i = cursor;
                ArrayList.this.add(i, e);
                cursor = i + 1;
                lastRet = -1;
                expectedModCount = modCount;
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }
    }

    /**
     * Returns a view of the portion of this list between the specified
     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.  (If
     * {@code fromIndex} and {@code toIndex} are equal, the returned list is
     * empty.)  The returned list is backed by this list, so non-structural
     * changes in the returned list are reflected in this list, and vice-versa.
     * The returned list supports all of the optional list operations.
     *
     * <p>This method eliminates the need for explicit range operations (of
     * the sort that commonly exist for arrays).  Any operation that expects
     * a list can be used as a range operation by passing a subList view
     * instead of a whole list.  For example, the following idiom
     * removes a range of elements from a list:
     * <pre>
     *      list.subList(from, to).clear();
     * </pre>
     * Similar idioms may be constructed for {@link #indexOf(Object)} and
     * {@link #lastIndexOf(Object)}, and all of the algorithms in the
     * {@link Collections} class can be applied to a subList.
     *
     * <p>The semantics of the list returned by this method become undefined if
     * the backing list (i.e., this list) is <i>structurally modified</i> in
     * any way other than via the returned list.  (Structural modifications are
     * those that change the size of this list, or otherwise perturb it in such
     * a fashion that iterations in progress may yield incorrect results.)
     *
     * @throws IndexOutOfBoundsException {@inheritDoc}
     * @throws IllegalArgumentException {@inheritDoc}
     */
    public List<E> subList(int fromIndex, int toIndex) {
        subListRangeCheck(fromIndex, toIndex, size);
        return new SubList(this, 0, fromIndex, toIndex);
    }

    static void subListRangeCheck(int fromIndex, int toIndex, int size) {
        if (fromIndex < 0)
            throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
        if (toIndex > size)
            throw new IndexOutOfBoundsException("toIndex = " + toIndex);
        if (fromIndex > toIndex)
            throw new IllegalArgumentException("fromIndex(" + fromIndex +
                                               ") > toIndex(" + toIndex + ")");
    }
    /**
     * 子列表类,维护的列表对象还是父类的列表对象,SubList只是维护一个下标区间
     */
    private class SubList extends AbstractList<E> implements RandomAccess {
        private final AbstractList<E> parent;
        private final int parentOffset;
        private final int offset;
        int size;

        SubList(AbstractList<E> parent,
                int offset, int fromIndex, int toIndex) {
            this.parent = parent;
            this.parentOffset = fromIndex;
            this.offset = offset + fromIndex;
            this.size = toIndex - fromIndex;
            this.modCount = ArrayList.this.modCount;
        }

        public E set(int index, E e) {
            rangeCheck(index);
            checkForComodification();
            E oldValue = ArrayList.this.elementData(offset + index);
            ArrayList.this.elementData[offset + index] = e;
            return oldValue;
        }

        public E get(int index) {
            rangeCheck(index);
            checkForComodification();
            return ArrayList.this.elementData(offset + index);
        }

        public int size() {
            checkForComodification();
            return this.size;
        }

        public void add(int index, E e) {
            rangeCheckForAdd(index);
            checkForComodification();
            parent.add(parentOffset + index, e);
            this.modCount = parent.modCount;
            this.size++;
        }

        public E remove(int index) {
            rangeCheck(index);
            checkForComodification();
            E result = parent.remove(parentOffset + index);
            this.modCount = parent.modCount;
            this.size--;
            return result;
        }

        protected void removeRange(int fromIndex, int toIndex) {
            checkForComodification();
            parent.removeRange(parentOffset + fromIndex,
                               parentOffset + toIndex);
            this.modCount = parent.modCount;
            this.size -= toIndex - fromIndex;
        }

        public boolean addAll(Collection<? extends E> c) {
            return addAll(this.size, c);
        }

        public boolean addAll(int index, Collection<? extends E> c) {
            rangeCheckForAdd(index);
            int cSize = c.size();
            if (cSize==0)
                return false;

            checkForComodification();
            parent.addAll(parentOffset + index, c);
            this.modCount = parent.modCount;
            this.size += cSize;
            return true;
        }

        public Iterator<E> iterator() {
            return listIterator();
        }

        public ListIterator<E> listIterator(final int index) {
            checkForComodification();
            rangeCheckForAdd(index);
            final int offset = this.offset;

            return new ListIterator<E>() {
                int cursor = index;
                int lastRet = -1;
                int expectedModCount = ArrayList.this.modCount;

                public boolean hasNext() {
                    return cursor != SubList.this.size;
                }

                @SuppressWarnings("unchecked")
                public E next() {
                    checkForComodification();
                    int i = cursor;
                    if (i >= SubList.this.size)
                        throw new NoSuchElementException();
                    Object[] elementData = ArrayList.this.elementData;
                    if (offset + i >= elementData.length)
                        throw new ConcurrentModificationException();
                    cursor = i + 1;
                    return (E) elementData[offset + (lastRet = i)];
                }

                public boolean hasPrevious() {
                    return cursor != 0;
                }

                @SuppressWarnings("unchecked")
                public E previous() {
                    checkForComodification();
                    int i = cursor - 1;
                    if (i < 0)
                        throw new NoSuchElementException();
                    Object[] elementData = ArrayList.this.elementData;
                    if (offset + i >= elementData.length)
                        throw new ConcurrentModificationException();
                    cursor = i;
                    return (E) elementData[offset + (lastRet = i)];
                }

                @SuppressWarnings("unchecked")
                public void forEachRemaining(Consumer<? super E> consumer) {
                    Objects.requireNonNull(consumer);
                    final int size = SubList.this.size;
                    int i = cursor;
                    if (i >= size) {
                        return;
                    }
                    final Object[] elementData = ArrayList.this.elementData;
                    if (offset + i >= elementData.length) {
                        throw new ConcurrentModificationException();
                    }
                    while (i != size && modCount == expectedModCount) {
                        consumer.accept((E) elementData[offset + (i++)]);
                    }
                    // update once at end of iteration to reduce heap write traffic
                    lastRet = cursor = i;
                    checkForComodification();
                }

                public int nextIndex() {
                    return cursor;
                }

                public int previousIndex() {
                    return cursor - 1;
                }

                public void remove() {
                    if (lastRet < 0)
                        throw new IllegalStateException();
                    checkForComodification();

                    try {
                        SubList.this.remove(lastRet);
                        cursor = lastRet;
                        lastRet = -1;
                        expectedModCount = ArrayList.this.modCount;
                    } catch (IndexOutOfBoundsException ex) {
                        throw new ConcurrentModificationException();
                    }
                }

                public void set(E e) {
                    if (lastRet < 0)
                        throw new IllegalStateException();
                    checkForComodification();

                    try {
                        ArrayList.this.set(offset + lastRet, e);
                    } catch (IndexOutOfBoundsException ex) {
                        throw new ConcurrentModificationException();
                    }
                }

                public void add(E e) {
                    checkForComodification();

                    try {
                        int i = cursor;
                        SubList.this.add(i, e);
                        cursor = i + 1;
                        lastRet = -1;
                        expectedModCount = ArrayList.this.modCount;
                    } catch (IndexOutOfBoundsException ex) {
                        throw new ConcurrentModificationException();
                    }
                }

                final void checkForComodification() {
                    if (expectedModCount != ArrayList.this.modCount)
                        throw new ConcurrentModificationException();
                }
            };
        }

        public List<E> subList(int fromIndex, int toIndex) {
            subListRangeCheck(fromIndex, toIndex, size);
            return new SubList(this, offset, fromIndex, toIndex);
        }

        private void rangeCheck(int index) {
            if (index < 0 || index >= this.size)
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        }

        private void rangeCheckForAdd(int index) {
            if (index < 0 || index > this.size)
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        }

        private String outOfBoundsMsg(int index) {
            return "Index: "+index+", Size: "+this.size;
        }

        private void checkForComodification() {
            if (ArrayList.this.modCount != this.modCount)
                throw new ConcurrentModificationException();
        }

        public Spliterator<E> spliterator() {
            checkForComodification();
            return new ArrayListSpliterator<E>(ArrayList.this, offset,
                                               offset + this.size, this.modCount);
        }
    }

    @Override
    public void forEach(Consumer<? super E> action) {
        Objects.requireNonNull(action);
        final int expectedModCount = modCount;
        @SuppressWarnings("unchecked")
        final E[] elementData = (E[]) this.elementData;
        final int size = this.size;
        for (int i=0; modCount == expectedModCount && i < size; i++) {
            action.accept(elementData[i]);
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
    }

    /**
     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
     * list.
     *
     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
     * Overriding implementations should document the reporting of additional
     * characteristic values.
     *
     * @return a {@code Spliterator} over the elements in this list
     * @since 1.8
     */
    @Override
    public Spliterator<E> spliterator() {
        return new ArrayListSpliterator<>(this, 0, -1, 0);
    }

    /** Index-based split-by-two, lazily initialized Spliterator */
    static final class ArrayListSpliterator<E> implements Spliterator<E> {

        /*
         * If ArrayLists were immutable, or structurally immutable (no
         * adds, removes, etc), we could implement their spliterators
         * with Arrays.spliterator. Instead we detect as much
         * interference during traversal as practical without
         * sacrificing much performance. We rely primarily on
         * modCounts. These are not guaranteed to detect concurrency
         * violations, and are sometimes overly conservative about
         * within-thread interference, but detect enough problems to
         * be worthwhile in practice. To carry this out, we (1) lazily
         * initialize fence and expectedModCount until the latest
         * point that we need to commit to the state we are checking
         * against; thus improving precision.  (This doesn't apply to
         * SubLists, that create spliterators with current non-lazy
         * values).  (2) We perform only a single
         * ConcurrentModificationException check at the end of forEach
         * (the most performance-sensitive method). When using forEach
         * (as opposed to iterators), we can normally only detect
         * interference after actions, not before. Further
         * CME-triggering checks apply to all other possible
         * violations of assumptions for example null or too-small
         * elementData array given its size(), that could only have
         * occurred due to interference.  This allows the inner loop
         * of forEach to run without any further checks, and
         * simplifies lambda-resolution. While this does entail a
         * number of checks, note that in the common case of
         * list.stream().forEach(a), no checks or other computation
         * occur anywhere other than inside forEach itself.  The other
         * less-often-used methods cannot take advantage of most of
         * these streamlinings.
         */

        private final ArrayList<E> list;
        private int index; // current index, modified on advance/split
        private int fence; // -1 until used; then one past last index
        private int expectedModCount; // initialized when fence set

        /** Create new spliterator covering the given  range */
        ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
                             int expectedModCount) {
            this.list = list; // OK if null unless traversed
            this.index = origin;
            this.fence = fence;
            this.expectedModCount = expectedModCount;
        }

        private int getFence() { // initialize fence to size on first use
            int hi; // (a specialized variant appears in method forEach)
            ArrayList<E> lst;
            if ((hi = fence) < 0) {
                if ((lst = list) == null)
                    hi = fence = 0;
                else {
                    expectedModCount = lst.modCount;
                    hi = fence = lst.size;
                }
            }
            return hi;
        }

        public ArrayListSpliterator<E> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid) ? null : // divide range in half unless too small
                new ArrayListSpliterator<E>(list, lo, index = mid,
                                            expectedModCount);
        }

        public boolean tryAdvance(Consumer<? super E> action) {
            if (action == null)
                throw new NullPointerException();
            int hi = getFence(), i = index;
            if (i < hi) {
                index = i + 1;
                @SuppressWarnings("unchecked") E e = (E)list.elementData[i];
                action.accept(e);
                if (list.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                return true;
            }
            return false;
        }

        public void forEachRemaining(Consumer<? super E> action) {
            int i, hi, mc; // hoist accesses and checks from loop
            ArrayList<E> lst; Object[] a;
            if (action == null)
                throw new NullPointerException();
            if ((lst = list) != null && (a = lst.elementData) != null) {
                if ((hi = fence) < 0) {
                    mc = lst.modCount;
                    hi = lst.size;
                }
                else
                    mc = expectedModCount;
                if ((i = index) >= 0 && (index = hi) <= a.length) {
                    for (; i < hi; ++i) {
                        @SuppressWarnings("unchecked") E e = (E) a[i];
                        action.accept(e);
                    }
                    if (lst.modCount == mc)
                        return;
                }
            }
            throw new ConcurrentModificationException();
        }

        public long estimateSize() {
            return (long) (getFence() - index);
        }

        public int characteristics() {
            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
        }
    }

    @Override
    public boolean removeIf(Predicate<? super E> filter) {
        Objects.requireNonNull(filter);
        // figure out which elements are to be removed
        // any exception thrown from the filter predicate at this stage
        // will leave the collection unmodified
        int removeCount = 0;
        final BitSet removeSet = new BitSet(size);
        final int expectedModCount = modCount;
        final int size = this.size;
        for (int i=0; modCount == expectedModCount && i < size; i++) {
            @SuppressWarnings("unchecked")
            final E element = (E) elementData[i];
            if (filter.test(element)) {
                removeSet.set(i);
                removeCount++;
            }
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }

        // shift surviving elements left over the spaces left by removed elements
        final boolean anyToRemove = removeCount > 0;
        if (anyToRemove) {
            final int newSize = size - removeCount;
            for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
                i = removeSet.nextClearBit(i);
                elementData[j] = elementData[i];
            }
            for (int k=newSize; k < size; k++) {
                elementData[k] = null;  // Let gc do its work
            }
            this.size = newSize;
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
            modCount++;
        }

        return anyToRemove;
    }

    @Override
    @SuppressWarnings("unchecked")
    public void replaceAll(UnaryOperator<E> operator) {
        Objects.requireNonNull(operator);
        final int expectedModCount = modCount;
        final int size = this.size;
        for (int i=0; modCount == expectedModCount && i < size; i++) {
            elementData[i] = operator.apply((E) elementData[i]);
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
        modCount++;
    }

    @Override
    @SuppressWarnings("unchecked")
    public void sort(Comparator<? super E> c) {
        final int expectedModCount = modCount;
        Arrays.sort((E[]) elementData, 0, size, c);
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
        modCount++;
    }
}
时间: 2024-07-31 08:12:54

从源码理解ArrayList.java的相关文章

从源码理解LinkedList.java

package java.util; import java.util.function.Consumer; /** * List和Deque接口的双向链表实现,实现了所有可选接口,允许空值null * 支持所有双向链表应该支持的操作,深入链表的操作都是从链表头遍历到链表尾 * 该实现不支持并发.多线程访问,至少一个线程修改列表结构时,需要外部同步,如: * List list = Collections.synchronizedList(new LinkedList(...)); * iter

从源码理解Stack.java

package java.util; /** * Stack类表示了后进先出(LIFO)的一个容器对象.Stack继承自Vector并扩展了五个操作,使得Vector可以被看作是一个Stack. * 常用的push和pop,以及获取栈顶元素的peek,测试栈是否为空的empty,一个搜索操作search并返回其与栈顶的距离 * 第一次创建的时候,栈中没有元素 * 更丰富更兼容的LIFO操作由Deque接口提供,Deque使用起来比Stack更好,比如: * Deque<Integer> sta

从源码理解LinkedHashMap.java

package java.util; import java.util.function.Consumer; import java.util.function.BiConsumer; import java.util.function.BiFunction; import java.io.IOException; import HashMap.Node; /** * 哈希表和链表实现Map接口,并具有固定迭代顺序. * LinkedHashMap实现和HashMap的不同之处在于LinkedH

Java源码之ArrayList

本文源码均来自Java 8 总体介绍 Collection接口是集合类的根接口,Java中没有提供这个接口的直接的实现类.Set和List两个类继承于它.Set中不能包含重复的元素,也没有顺序来存放.而List是一个有序的集合,可以包含重复的元素. 而Map又是另一个接口,它和Collection接口没有关系.Map包含了key-value键值对,同一个Map里key是不能重复的,而不同key的value是可以相同的. 在这里借用一张别人总结的对比图进行总结 集合类对比 (上图来源:http:/

Java集合源码剖析——ArrayList源码剖析

ArrayList简介 ArrayList是基于数组实现的,是一个动态数组,其容量能自动增长,类似于C语言中的动态申请内存,动态增长内存. ArrayList不是线程安全的,只能用在单线程环境下,多线程环境下可以考虑用Collections.synchronizedList(List l)函数返回一个线程安全的ArrayList类,也可以使用concurrent并发包下的CopyOnWriteArrayList类. ArrayList实现了Serializable接口,因此它支持序列化,能够通过

【源码阅读】Java集合 - ArrayList深度源码解读

Java 源码阅读的第一步是Collection框架源码,这也是面试基础中的基础: 针对Collection的源码阅读写一个系列的文章,从ArrayList开始第一篇. [email protected] JDK版本 JDK 1.8.0_110 概述总结 ArrayList底层是通过数组实现的:其中capacity表示底层数组的长度,而ArrayList长度由size表示: ArrayList允许存放null元素,也可以查找null所在的index, 比如indexOf(), lastIndex

【源码】ArrayList源码剖析

//-------------------------------------------------------------------- 转载请注明出处:http://blog.csdn.net/chdjj by Rowandjj 2014/8/7 //-------------------------------------------------------------------- 从这篇文章开始,我将对java集合框架中的一些比较重要且常用的类进行分析.这篇文章主要介绍的是Array

Android源码开发利器——Java源码调试(基于4.1.2)

原文地址:http://blog.csdn.net/jinzhuojun/article/details/8868038 调试Android Java源码 草帽的后花园--Neo 写在之前的话:这里主要是以调试Java源码为主,应该说是在system_process之后的源码,这对于调试和修改frameworks层的人来说真是一个利器,但至于为什么在system_process之后,我还在分析,如果有结果我会更新此文章,并正在尝试调试C++的代码,就是native中的代码,如果这个可行那将会大大

JDK源码学习----ArrayList

                                                                         JDK源码学习----ArrayList 1.ArrayList简介 ArrayList是基于Object[] 数组的,也就是我们常说的动态数组.它能很方便的实现数组的增加删除等操作. public class ArrayList<E> extends AbstractList<E> implements List<E>, R